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Abstract 

This study explores the volatility dynamics of the Nifty ESG 100 Index using the ARCH family of 
models. The Autoregressive Conditional Heteroscedasticity (ARCH) model and its generalizations, 
particularly the Generalized ARCH (GARCH) model, have proven to be effective in capturing time-
varying volatility in financial time series. The Nifty ESG 100 Index, which tracks companies with 
high environmental, social, and governance (ESG) standards, is becoming increasingly relevant 
in India’s evolving financial markets. By employing ARCH, GARCH, and extensions like 
EGARCH and TGARCH, this paper seeks to model and forecast the index’s volatility, considering 
the persistence and asymmetric behavior of market fluctuations. The analysis aims to provide 
insights into the volatility patterns that can assist investors and portfolio managers in making 
informed risk management decisions. Diagnostic tests confirm the validity of the models, and 
out-of-sample volatility forecasts highlight the robustness of GARCH-type models in capturing 
volatility clustering and persistence for the Nifty ESG 100 Index. 

Keywords: GARCH Models; ESG Markets; Developing and Developed Countries 

1. Introduction  

Volatility modelling plays a critical role in financial econometrics, particularly for understanding 
and forecasting risk in asset prices. In recent years, sustainable investing has gained traction, with 
indices like the Nifty ESG 100 Index being introduced to track the performance of companies 
that meet environmental, social, and governance (ESG) criteria. These indices represent a new 
frontier in investment strategies, blending financial performance with sustainability objectives. 
Given the growing importance of ESG-focused indices, understanding their volatility is essential 
for investors looking to align financial goals with ethical considerations. 
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The Nifty ESG 100 Index, launched by the National Stock Exchange (NSE) in India, includes the 
top 100 companies based on ESG scores from the Nifty 100 universe. The index has attracted 
attention due to the increasing awareness of sustainable practices, but like other financial indices, 
it is subject to market volatility driven by both local and global factors. Understanding this 
volatility is critical for portfolio management, hedging strategies, and risk assessment. 

In financial markets, volatility often exhibits time-varying behaviour and is prone to clustering, 
where periods of high volatility are followed by more volatile periods, and periods of calmness 
follow periods of low volatility. Such characteristics make ARCH models, proposed by Engle 
(1982), particularly useful in volatility analysis. The basic ARCH model was later generalized by 
Bollerslev (1986) to the GARCH model, allowing for both past squared returns and past volatility 
to explain current volatility. These models have been widely applied to a variety of asset classes, 
including stocks, bonds, and commodity markets, to capture their time-varying volatility. 

This paper applies the ARCH family of models to the Nifty ESG 100 Index, aiming to model and 
forecast its volatility. By using GARCH (1, 1) and more advanced models such as EGARCH and 
TGARCH, we account for volatility clustering, persistence, and asymmetric behaviour in the data. 
These models are particularly valuable in capturing the leverage effect, where negative shocks 
tend to increase volatility more than positive shocks, a feature often observed in equity markets. 

The primary contributions of this paper are twofold: first, to provide a detailed analysis of the 
volatility structure of a relatively new and important index in India, and second, to offer out-of-
sample forecasts of volatility that can guide investment decisions and risk management strategies. 
Through the use of diagnostic tests and model comparisons, we validate the effectiveness of these 
models in explaining the volatility patterns of the Nifty ESG 100 Index. 

2. Review of Literature 
Volatility modeling has been a central focus in financial econometrics, particularly since the 
introduction of autoregressive conditional heteroskedasticity (ARCH) by Engle (1982) and its 
generalized version (GARCH) by Bollerslev (1986). These models have proven indispensable for 
understanding the time-varying nature of financial volatility. Over time, numerous variants of the 
GARCH model, such as TGARCH, EGARCH, PARCH, and IGARCH, have been developed to 
account for asymmetries, leverage effects, and persistence in volatility, further improving risk 
management and portfolio strategies across different asset classes and markets. 

2.1 Volatility Modeling with GARCH Family Models 

The traditional GARCH (1,1) model proposed by Bollerslev (1986) remains one of the most 
widely used models to capture volatility clustering, where periods of high volatility are followed 
by high volatility, and periods of low volatility are followed by low volatility. It assumes that 
volatility is time-varying but symmetrically distributed, which can limit its accuracy in the 
presence of market shocks. Nelson (1991) introduced the Exponential GARCH (EGARCH) 
model, which allows for the modeling of asymmetric volatility, capturing the "leverage effect," 
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where negative shocks tend to increase volatility more than positive shocks of the same 
magnitude. 

In addition to EGARCH, Glosten, Jagannathan, and Runkle (1993) proposed the Threshold 
GARCH (TGARCH) model to accommodate the asymmetric response of volatility to negative 
news. These models improve the accuracy of volatility forecasting, especially during periods of 
financial distress, making them valuable tools for analyzing market behavior in both developed 
and emerging markets. PARCH (Power ARCH), introduced by Ding, Granger, and Engle (1993), 
further refines volatility modeling by allowing for power transformations of the absolute value of 
returns, making the model more flexible in capturing volatility patterns across various asset 
classes. 

Empirical research has demonstrated the efficacy of these models in capturing volatility dynamics 
across different markets. For instance, studies like Franses and Van Dijk (1996) have emphasized 
the advantages of GARCH models in emerging markets, where volatility tends to be higher and 
more persistent. More recently, volatility modeling has gained attention in sustainable finance, 
particularly in the context of ESG (Environmental, Social, and Governance) indices. 

2.2 Volatility in ESG Markets 

The rise of ESG investing has prompted research into the volatility characteristics of ESG indices. 
Research by Reboredo et al. (2017) examines the volatility of green bond indices and finds that 
while they exhibit lower volatility compared to traditional indices, they are still sensitive to 
market shocks. Studies like Ardia et al. (2021) focus on ESG equity indices and note that while 
ESG stocks generally display lower volatility due to their more resilient business models and 
governance structures, they are not immune to periods of heightened volatility caused by global 
financial and economic events. The NIFTY ESG 100 Index, which tracks companies in India that 
score well on environmental, social, and governance criteria, has become an area of focus for 
volatility modeling in emerging markets. 

In the European context, indices like the MSCI Europe ESG Leaders Index have been examined 
for their volatility characteristics. Studies such as Menike (2022) note that ESG indices in 
developed markets tend to exhibit lower volatility compared to traditional indices, although they 
can still be affected by macroeconomic factors, geopolitical risks, and environmental crises. The 
ESG factors' ability to absorb market shocks and potentially reduce downside risk has led to the 
increasing use of GARCH models to compare volatility dynamics between ESG and non-ESG 
indices. 

2.3 Comparative Studies of Volatility in Emerging vs. Developed Markets 

Emerging markets, such as India, are typically characterized by higher volatility due to 
macroeconomic instability, regulatory changes, and liquidity issues (Bekaert and Harvey, 1997). 
In contrast, developed markets, such as Europe, often exhibit lower volatility but are still subject 
to market contagion and spillover effects. When comparing volatility in emerging markets with 
developed markets, studies like Baele (2005) highlight the importance of modeling volatility 
spillovers. Emerging market indices such as the NIFTY ESG 100 may experience greater 
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volatility clustering due to local factors, while indices like MSCI Europe ESG Leaders may 
experience volatility spillovers from global economic events. 

The use of GARCH-type models for analyzing spillover effects between markets has become 
increasingly common. Engle and Rangel (2008) introduced the concept of time-varying 
correlation through a Dynamic Conditional Correlation (DCC) GARCH model, which has been 
employed in cross-market studies to capture spillover effects. Bouri et al. (2020) use GARCH 
models to study the impact of global market movements on ESG indices, revealing that volatility 
spillovers are significant in both directions, although more pronounced from developed to 
emerging markets. 

2.4 Leverage Effect and Asymmetric Volatility 

One of the key findings in volatility modeling using GARCH family models is the leverage effect, 
where negative returns increase volatility more than positive returns of the same magnitude 
(Black, 1976). The asymmetric nature of volatility, as captured by models like EGARCH and 
TGARCH, is particularly relevant when studying indices such as the NIFTY ESG 100 and MSCI 
Europe ESG Leaders. Research by Chen and Ghysels (2011) confirms the presence of significant 
asymmetry in emerging markets, while Brooks and Persand (2003) show that European markets 
also exhibit leverage effects, though to a lesser extent. This asymmetric behavior underscores the 
importance of using models that can capture non-linear responses to market events. 

Volatility modeling using GARCH family models has proven to be a valuable tool in 
understanding the risk dynamics of both traditional and ESG indices. As ESG investing continues 
to grow, understanding the volatility characteristics of ESG indices becomes increasingly 
important. The comparison between the NIFTY ESG 100 Index and the MSCI Europe ESG 
Leaders Index provides insights into how emerging and developed markets behave under different 
volatility regimes. The use of GARCH, TGARCH, EGARCH, and other related models allows 
for a deeper understanding of how these markets respond to shocks, including the leverage and 
spillover effects. Future research could expand on these findings by incorporating 
macroeconomic variables and employing multivariate GARCH models to further analyze the co-
movement between ESG and traditional indices. 

3. Data and Research Methodology 

Select Indices for the Study 

India’s ESG Index: Nifty ESG 100 

India’s Benchmark Index: Nifty 50 

EU’s ESG Index: MSCI Europe ESG Leaders 

EU’s Benchmark Index: EURO STOXX 50 

The analysis covers a 7-year period (2017-2024) and focuses on the following GARCH family 
results. 
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3.1 The GARCH Model 

GARCH models well-defined as models of returns or of financial time series. Here, volatility 
corresponds with the magnitude of returns of series or of some other financial time series. This is 
because of assuming the series to be modelled is proportional to a zero-mean. Volatility depends 
not only on the past prices of the process as in ARCH models but also on the past prices of 
volatility. The simplest GARCH (1, 1) specification as follows: in which the mean equation given 
in (1) is written as a function of exogenous variables with an error term. 

The GARCH (1, 1) model is represented by the following two key equations: 

The Mean Equation is   𝑌௧ =  𝑋௧′ 𝜃 + 𝜖௧       (1) 

The Variance Equation is 𝜎௧
ଶ = 𝜔 + 𝛼𝜖௧ିଵ

ଶ + 𝛽𝜎௧ିଵ
ଶ         (2) 

In this model, the conditional variance 𝜎௧
ଶ depends on both the past shocks 𝜖௧ିଵ

ଶ  and the previous 
period's variance 𝛽𝜎௧ିଵ

ଶ . 

3.2 TGARCH Model 

The Threshold GARCH (TGARCH) model is an extension of the GARCH model that accounts 
for the asymmetric effects of positive and negative shocks on volatility. It allows the conditional 
variance to respond differently to positive and negative innovations, often capturing the 
phenomenon known as the "leverage effect," where negative shocks tend to increase volatility 
more than positive shocks of the same magnitude. 

The TGARCH (1,1) model is typically expressed as: 

𝜎௧
ଶ = 𝜔 + ∑ 𝛽𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼𝜖௧ିଵ

ଶ
ୀଵ + ∑ 𝛾𝜖௧

ଶΓ௧ି

ୀଵ    (3) 

In this model, if γ1>0, negative shocks (bad news) increase volatility more than positive shocks 
(good news) of the same magnitude. TGARCH is useful in capturing these asymmetries, 
especially in financial time series where bad news tends to have a larger impact on volatility than 
good news. 

3.3 EGARCH Model 

The exponential GARCH model was proposed by Nelson (1991). This model a variant of the 
GARCH model that captures asymmetry and leverage effects, allowing volatility to respond 
differently to positive and negative shocks. Unlike the standard GARCH, the EGARCH model 
ensures that the conditional variance is always positive without needing parameter restrictions, as 
it models the logarithm of the conditional variance. There are various ways to express the 
conditional variance equation, but one possible specification is given by 
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log 𝜎௧
ଶ = 𝜔 + ∑ 𝛽 log 𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼 ቚ

ఢష

ఙష
ቚ


ୀଵ + ∑ 𝛾

ఢషೖ

ఙషೖ


ୀଵ    (4) 

The model accounts for the asymmetry through the α term: if α≠0, it indicates that positive and 
negative shocks have different impacts on volatility. If α<0, negative shocks (bad news) increase 
volatility more than positive shocks (good news). 

Because the variance is modeled in logarithmic form, the EGARCH model ensures non-negative 
variance without imposing constraints on the parameters, making it more flexible for financial 
time series data that exhibit leverage effects. 

3.4 PARCH Model 

The PARCH model (Power ARCH) is a variant of the GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) model. It introduces a flexible approach to model the volatility 
of time series by incorporating a power transformation of the error terms in the variance equation. 
Unlike traditional GARCH models, where the volatility is modeled using squared residuals, 
PARCH allows the power of residuals to be any real number, offering more flexibility in capturing 
different types of volatility patterns. 

𝜎௧
ఋ = 𝜔 + ∑ 𝛽𝜎௧ି

ఋ
ୀଵ + ∑ 𝛼  (

ఘ
ୀଵ |𝜖௧ି| − 𝛾𝜖௧ି)δ    (5) 

 
Where δ > 1, |𝛾|  ≤ 1 for 𝑖 = 1, . . . , г, 𝛾 = 0 for all 𝑖 > 𝔯, and 𝔯 ≤ 𝑝 . The symmetric model 
sets 𝛾for all 𝑖. Note that if 𝛿 = 2 and 𝛾 = 0 for all 𝑖, the PARCH model is simply a standard 
GARCH specification. As in the previous models, the asymmetric effects are present if 𝛾 ≠ 0. 

3.5 IGARCH Model 

The Integrated GARCH (IGARCH) model is a specialized variant of the GARCH model that is used 
to model financial time series with persistent volatility clustering. Unlike standard GARCH 
models, which allow for mean-reverting behavior in the volatility process, IGARCH models 
incorporate a unit root in the volatility equation, resulting in non-stationary volatility that exhibits 
long memory properties. This characteristic makes IGARCH particularly suitable for modeling 
financial data that display high persistence in volatility over time. 

𝜎௧
ଶ = ∑ 𝛽𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼𝜖௧ି

ଶ
ୀଵ       (6) 

Such that 
∑ 𝛽 + ∑ 𝛼


ୀଵ = 1


ୀଵ        (7) 

then we have an integrated GARCH (Engle and Bollerslev (1986)).  

3.6 Hypotheses for the Study 

3.6.1 Measures of Normality 
Null Hypothesis (H01)   : Indices are normally distributed 
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Alternative Hypothesis (H11) : Indices are not normally distributed 

3.6.2 Checking Stationarity 
Null Hypothesis (H02)   : Indices are not stationary data and has unit root 
Alternative Hypothesis (H22) : Indices are stationary data and has no unit root 

3.6.3 Presence of Arch Effect 
Null Hypothesis (H03)   : Presence of Arch effect is not exist 
Alternative Hypothesis (H33) : Presence of Arch effect exist 

Augmented Dickey – Fuller (ADF) Unit Root Test 
The ADF Test shows that the data has no unit root and it is stationary. 

4. Results & Discussion  

Table 4.1: Descriptive Statistics of Indices 

 

 NIFTY 100 ESG NIFTY 50 
MCSI Europe 
ESG Leaders 

Europe 
STOXX 50 

 Mean  0.000605  0.000569  0.000228  0.000282 

 Median  0.001097  0.000973  0.000518  0.000512 

 Maximum  0.090893  0.087632  0.081142  0.092362 

 Minimum -0.125822 -0.129805 -0.112153 -0.124014 

 Std. Dev.  0.010655  0.010850  0.009707  0.011670 

 Skewness -1.157582 -1.218911 -1.013114 -0.692466 

 Kurtosis  23.05522  23.63054  18.56734  16.91563 

 Jarque-Bera  29430.09  31162.39  18740.28  14553.13 

 Probability  0.000000  0.000000  0.000000  0.000000 

 Sum  1.049109  0.985645  0.416012  0.503334 

 Sum Sq. Dev.  0.196621  0.203900  0.171877  0.243098 

 Observations  1733  1733  1825  1786 

This table 4.1 presents a statistical summary of four indices: NIFTY 100 ESG, NIFTY 50, MCSI 
Europe ESG Leaders, and Europe STOXX 50. Among these NIFTY 100 ESG (0.000605) and 
NIFTY 50 (0.000569) have higher average daily returns than MCSI Europe ESG Leaders 
(0.000228) and Europe STOXX 50 (0.000282). Europe STOXX 50 shows the highest volatility 
(Std. Dev: 0.011670), followed by NIFTY 50 and NIFTY 100 ESG, while MCSI Europe ESG 
Leaders has the lowest of all indices. 
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All indices are negatively skewed, meaning they experience more small positive returns but are 
prone to occasional large losses. All indices exhibit high kurtosis, indicating extreme returns (both 
positive and negative) are more likely than in a normal distribution. The Jarque-Bera test confirms 
that none of the indices follow a normal distribution, as evidenced by extremely low p-values. In 
summary, all indices show higher volatility with the potential for extreme returns and non-normal 
distribution, important for understanding risk in portfolio management. 

Table 4.2: Models for volatility of the NIFTY ESG 100 Index  

𝑌௧ =  𝑋௧′ 𝜃 + 𝜖௧    

GARCH (1, 1): 𝜎௧
ଶ = 𝜔 + 𝛼𝜖௧ିଵ

ଶ + 𝛽𝜎௧ିଵ
ଶ    

GJR or TARCH (1, 1): 𝜎௧
ଶ = 𝜔 + ∑ 𝛽𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼𝜖௧ିଵ

ଶ
ୀଵ + ∑ 𝛾𝜖௧

ଶ𝜏௧ି

ୀଵ  

EGARCH (1, 1): log 𝜎௧
ଶ = 𝜔 + ∑ 𝛽 log 𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼 ቚ

ఢష

ఙష
ቚ


ୀଵ + ∑ 𝛾

ఢషೖ

ఙషೖ


ୀଵ  

PARCH (1, 1): 𝜎௧
ఋ = 𝜔 + ∑ 𝛽𝜎௧ି

ఋ
ୀଵ + ∑ 𝛼  (

ఘ
ୀଵ |𝜖௧ି| − 𝛾𝜖௧ି)δ  

IGARCH (1, 1):𝜎௧
ଶ = ∑ 𝛽𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼𝜖௧ି

ଶ
ୀଵ  and ∑ 𝛽 + ∑ 𝛼


ୀଵ = 1


ୀଵ  

 GARCH (1,1) TGARCH (1,1) EGARCH (1,1) PARCH (1,1) IGARCH (1,1) 

𝜃 

0.969220 

(0.002856) 

[0.0000] 

0.969300 

(0.002853) 

[0.0000] 

0.967684 

(0.002661) 

[0.0000] 

0.969433 

(0.002851) 

[0.0000] 

0.968510 

(0.002177) 

[0.0000] 

    

1.741605 

(0.435984) 

[0.0001] 

 

1 

0.945007 

(0.008763) 

[0.0000] 

0.945975 

(0.008694) 

[0.0000] 

0.988660 

(0.003425) 

[0.0000] 

0.945555 

(0.009146) 

[0.0000] 

0.968573 

(0.002910) 

[0.0000] 

1 

0.048177 

(0.007495) 

[0.0000] 

0.055859 

(0.011327) 

[0.0000] 

0.112511 

(0.014656) 

[0.0000] 

0.052413 

(0.011794) 

[0.0000] 

0.0311427 

(0.002910) 

[0.0000] 
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1  

-0.014911 

(0.013169) 

[0.2575] 

0.011263 

(0.010575) 

[0.2868] 

-0.081672 

(0.075148) 

[0.2771] 

 

R2 0.962054 0.962052 0.962063 0.962049 0.962062 

DW Stat 2.003680 2.003668 2.002508 2.003705 2.003301 

Persistence 0. 945007     

Log-likelihood 8386.171 8386.698 8383.284 8387.055 8376.500 

AIC -9.672442 -9.671897 -9.667956 -9.671154 -9.663589 

The table 4.2 provides estimates for different GARCH-type models (GARCH, TGARCH, 
EGARCH, PARCH, and IGARCH) with key parameters: θ (long-run variance), β1 (persistence 
of shocks), α1 (volatility response to shocks), γ1 (asymmetry in volatility response), and δ (power 
in PARCH). The θ parameter is consistent across all models, around 0.969, indicating a high long-
term volatility level across models. This suggests that these models predict substantial volatility 
persistence in the market.  

Across all models, β1 is close to 1, indicating high persistence in volatility. This means that shocks 
to volatility have long-lasting effects, especially in the EGARCH (0.988660) and IGARCH 
(0.968573) models, which show the highest persistence. The α1 parameter, which measures how 
volatility responds to market shocks, varies across models but remains positive.  

EGARCH shows the highest α1 (0.112511), suggesting that volatility reacts more strongly to 
shocks in this model compared to others. IGARCH has the lowest α1 (0.031143), indicating a 
relatively lower immediate volatility reaction to shocks. The γ1 parameter, present in TGARCH 
and EGARCH, captures the asymmetry in volatility's reaction to positive and negative shocks. 
However, the estimates for γ1 are statistically insignificant in both models, indicating that these 
models do not detect significant asymmetry in volatility response in this context. 

The PARCH model introduces the δ parameter (1.741605), which controls the power term in 
volatility dynamics, capturing non-linear effects of past shocks on volatility. The significance of 
δ indicates that non-linear effects are important in explaining the volatility structure. All models 
exhibit a very similar R² (~0.962), meaning they explain about 96% of the variance in the data, 
showing that all models fit well.  

Durbin-Watson statistics are close to 2, suggesting no significant autocorrelation in the residuals, 
a good sign for model validity. The log-likelihood values are very close across models, with 
PARCH (8387.055) having the highest, indicating a slightly better fit. Similarly, AIC values are 
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close, with the GARCH model having the lowest (-9.672442), indicating it slightly edges out the 
others in model performance based on the Akaike criterion. 

GARCH (1, 1) shows strong persistence (β1 = 0.945007) and a good overall fit (lowest AIC). 
TGARCH (1, 1) introduces asymmetry in volatility, but the asymmetry effect is statistically 
insignificant. EGARCH (1, 1) has the highest volatility response (α1 = 0.112511) and strong 
persistence (β1 = 0.988660), but shows no significant asymmetry. PARCH (1,1) incorporates non-
linear volatility effects (significant δ), performing well in terms of log-likelihood. IGARCH (1,1) 
shows high persistence (β1 = 0.968573), meaning shocks have a lasting impact on volatility.  

In conclusion, all models show high volatility persistence, with EGARCH and IGARCH 
capturing the strongest persistence, and PARCH adding the dimension of non-linear effects. The 
GARCH model has the lowest AIC, making it slightly preferred based on this criterion. 

Table 4.3: Models for volatility of the MSCI Europe ESG Leaders 

𝑌௧ =  𝑋௧′ 𝜃 + 𝜖௧    

GARCH (1, 1): 𝜎௧
ଶ = 𝜔 + 𝛼𝜖௧ିଵ

ଶ + 𝛽𝜎௧ିଵ
ଶ    

GJR or TARCH (1, 1): 𝜎௧
ଶ = 𝜔 + ∑ 𝛽𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼𝜖௧ିଵ

ଶ
ୀଵ + ∑ 𝛾𝜖௧

ଶ𝜏௧ି

ୀଵ  

EGARCH (1, 1): log 𝜎௧
ଶ = 𝜔 + ∑ 𝛽 log 𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼 ቚ

ఢష

ఙష
ቚ


ୀଵ + ∑ 𝛾

ఢషೖ

ఙషೖ


ୀଵ  

PARCH (1, 1): 𝜎௧
ఋ = 𝜔 + ∑ 𝛽𝜎௧ି

ఋ
ୀଵ + ∑ 𝛼  (

ఘ
ୀଵ |𝜖௧ି| − 𝛾𝜖௧ି)δ  

IGARCH (1, 1):𝜎௧
ଶ = ∑ 𝛽𝜎௧ି

ଶ
ୀଵ + ∑ 𝛼𝜖௧ି

ଶ
ୀଵ  and ∑ 𝛽 + ∑ 𝛼


ୀଵ = 1


ୀଵ  

 

 GARCH (1,1) TGARCH (1,1) EGARCH (1,1) PARCH (1,1) IGARCH (1,1) 

𝜃 

0.745921 

(0.007323) 

[0.0000] 

0.752921 

(0.007377) 

[0.0000] 

0.743614 

(0.007716) 

[0.0000] 

0.753106 

(0.007369) 

[0.0000] 

0.748902 

(0.005838) 

[0.0000] 

    

2.710040 

(0.405026) 

[0.0000] 

 

1 

0.912532 

(0.004961) 

[0.0000] 

0.912858 

(0.005454) 

[0.0000] 

0.995275 

(0.001324) 

[0.0000] 

0.911726 

(0.005817) 

[0.0000] 

0.928492 

(0.003604) 

[0.0000] 
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1 

0.095353 

(0.006782) 

[0.0000] 

0.113283 

(0.010931) 

[0.0000] 

0.014344 

(0.009799) 

[0.1433] 

-0.095299 

(0.037310) 

[0.0106] 

0.071508 

(0.003604) 

[0.0000] 

1   

0.222238 

(0.013059) 

[0.0000] 

0.070065 

(0.013953) 

[0.0000] 

 

R2 -0.454291 -0.466918 -0.450465 -0.466405 -0.459267 

DW Stat 2.164663 2.164842 2.164551 2.164854 2.164792 

Persistence      

Log-likelihood 6499.871 6501.331 6492.946 6502.802 6486.149 

AIC -7.273092 -7.273607 -7.264218 -7.274134 -7.259965 

This table 4.3 summarizes the results for various GARCH-type models (GARCH, TGARCH, 
EGARCH, PARCH, and IGARCH), with key parameters like θ (long-run variance), β1 (shock 
persistence), α1 (volatility response to shocks), γ1 (asymmetry in volatility response), and δ (power 
term in PARCH). The θ parameter is similar across models, ranging from 0.7436 (EGARCH) to 
0.7531 (PARCH), indicating comparable long-term volatility estimates across these models. The 
β1 values are quite high across all models, showing strong persistence in volatility. The highest 
persistence is observed in the EGARCH model (0.995275), indicating that volatility shocks have 
long-lasting effects. The IGARCH model also has high persistence (0.928492), reflecting similar 
characteristics. The α1 parameter, representing the response to shocks, is significant in most 
models. TGARCH has the highest α1 (0.113283), showing a strong response to volatility shocks. 
In contrast, EGARCH has a much smaller and statistically insignificant α1 (0.014344), suggesting 
that this model relies more on asymmetry (γ1) to capture volatility dynamics. PARCH has a 
negative α1 (-0.095299), indicating a different response structure, while IGARCH has a lower but 
significant α1 (0.071508). 

The TGARCH and EGARCH models include the asymmetry parameter (γ1). TGARCH shows a 
strong asymmetry (γ1 = 0.222238), indicating that negative shocks have a larger effect on 
volatility than positive ones. EGARCH has a smaller but still significant asymmetry (γ1 = 
0.070065). The PARCH model introduces a power term (δ = 2.710040), capturing non-linear 
effects of past shocks on volatility. The significant δ indicates that the model benefits from 
considering non-linear volatility dynamics. All models show negative R² values, suggesting a 
poor fit in this context. A negative R² might arise from an inappropriate model specification or 
issues with the data series. Durbin-Watson statistics are all close to 2, indicating no significant 
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autocorrelation in the residuals, which is a positive sign. The log-likelihood values are close, with 
PARCH (6502.802) having the highest, suggesting a slightly better model fit compared to the 
others. The AIC values are also similar, with PARCH having the lowest (-7.274134), indicating 
it slightly outperforms the other models in terms of goodness of fit based on this criterion. 

GARCH (1,1) model has High persistence (β1 = 0.912532) and significant shock response 
(α1 = 0.095353), but with a poor overall fit (negative R²). TGARCH (1,1) model has 
Strong asymmetry (γ1 = 0.222238) and high shock response (α1 = 0.113283), making it 
better suited for capturing volatility from negative shocks, but with a similarly poor fit. 
EGARCH (1,1) is the most persistent model (β1 = 0.995275) with lower shock response, 
but notable asymmetry (γ1 = 0.070065). However, it has a slightly worse fit than TGARCH 
and PARCH. PARCH (1,1) model introduces non-linear volatility dynamics (significant 
δ) and has the best fit in terms of log-likelihood and AIC, despite the negative R². 
IGARCH (1,1) model has High persistence (β1 = 0.928492) and lower shock response (α1 
= 0.071508), but overall, it shows similar limitations in model fit.  

In conclusion, the models capture high volatility persistence, with TGARCH effectively 
modeling asymmetry and PARCH benefiting from non-linear dynamics. However, all 
models show poor R² values, suggesting that the dataset might not align well with these 
model structures. 

Exhibit 1: Conditional Volatility of GARCH Family Models – NIFTY ESG 100 

 

The exhibit 1 displays the conditional variance plots of the NIFTY ESG 100 index, modeled using 
five different GARCH-type models: TGARCH, PARCH, GARCH, EGARCH, and IGARCH. 
Each plot shows how volatility evolves over time for the NIFTY ESG 100 index, with some 
shared observations and model-specific variations. All models demonstrate periods of increased 
volatility followed by mean reversion, indicating that volatility clusters, a common characteristic 
in financial time series. Significant volatility spikes are observed in all models, particularly in the 
mid to later periods, followed by gradual declines. 
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TGARCH Shows volatility spikes similar to the other models but with more pronounced jumps 
in volatility compared to GARCH. As a threshold model, TGARCH tends to capture asymmetry 
better, likely explaining the higher peaks in response to negative shocks. PARCH displays similar 
volatility dynamics to TGARCH, with several peaks over time. The non-linear nature of the 
PARCH model could be capturing the changes in volatility differently from the linear models, 
leading to slightly different dynamics in the peaks and troughs. GARCH Shows relatively 
smoother variance compared to the TGARCH and PARCH models but still reflects volatility 
clustering and significant spikes. The typical GARCH behavior of capturing long-term 
persistence in volatility is evident, but the model seems to underestimate sharp jumps compared 
to TGARCH. EGARCH exhibits high volatility spikes, similar to TGARCH, but the conditional 
variance seems slightly more volatile than the GARCH model. EGARCH’s ability to capture 
asymmetry without non-negativity constraints might explain the additional variance fluctuations 
during volatile periods. IGARCH shows strong persistence in volatility, with less clear mean 
reversion compared to the other models. IGARCH is designed to capture persistent shocks, and 
this is reflected in the smoother, longer-lasting periods of higher volatility across the entire time 
period. All models show volatility clustering and the presence of spikes in certain periods, likely 
driven by market events or shocks. TGARCH and EGARCH show more volatility response 
compared to GARCH, reflecting their ability to capture asymmetry in volatility responses to 
negative and positive shocks. PARCH incorporates non-linear effects, producing volatility 
patterns similar to TGARCH, though with a slightly different structure. IGARCH captures 
persistent volatility effects, showing less tendency toward volatility reversion after spikes, 
reflecting its core feature of assuming near-permanent effects from shocks. This comparative 
analysis suggests that the models capture similar volatility trends but with differences in how they 
react to market shocks and volatility dynamics. 

Exhibit 2: Conditional Volatility of GARCH Family Models – MCSI Europe ESG Leaders 

 

The Exhibit 2 shows the conditional variance plots for the MSCI Europe ESG Leaders index, 
using five GARCH-type models: TGARCH, PARCH, GARCH, EGARCH, and IGARCH. These 
plots reflect how each model estimates the volatility (conditional variance) over time for this 
index, particularly focusing on the behavior during volatile periods and periods of calm. All 
models indicate a significant volatility spike around the same period, followed by a sharp decline 
and smaller subsequent fluctuations. There is a clear clustering of volatility, with a pronounced 
peak that dominates the graph, suggesting a major event or market shock during this time. The 
variance stabilizes after the large spike, with lower but persistent fluctuations for the remainder 
of the period. 
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The TGARCH model shows a sharp and distinct peak in volatility, followed by a gradual 
decrease. Given that TGARCH accounts for asymmetry in volatility response (i.e., it reacts more 
strongly to negative shocks), the model captures a high variance during the spike, which might 
be tied to a period of market distress. Similar to TGARCH, PARCH shows a prominent volatility 
peak, but it captures the decline in volatility more gradually. The PARCH model’s power term 
may allow it to reflect non-linear dynamics in volatility, contributing to a slightly different decay 
of variance after the peak compared to other models. The GARCH model demonstrates the same 
large spike in volatility, although the rise and fall are relatively smoother compared to the 
asymmetry models like TGARCH. GARCH captures persistent volatility but does not react as 
sharply to negative or positive shocks, making its response more symmetric. EGARCH, which 
also accounts for asymmetry but without the constraint that variances must be positive, shows a 
sharp spike similar to TGARCH, though it seems to return to lower levels of volatility faster. The 
model's ability to capture asymmetry without constraints might result in a more rapid decay of 
volatility after the initial shock. The IGARCH model displays a strong persistence in volatility, 
with a similar initial spike but a much more gradual decrease in conditional variance. Since 
IGARCH assumes permanent shocks, it shows more prolonged elevated variance following the 
peak, indicating that volatility shocks have longer-lasting effects in this model. All models exhibit 
a significant volatility spike around the same period, likely reflecting a major market event. 

TGARCH and EGARCH show sharp peaks, with TGARCH displaying more sensitivity to market 
shocks, particularly negative ones. PARCH shows a smoother transition post-volatility, capturing 
non-linear effects, while GARCH displays persistent but more symmetric volatility patterns. 
IGARCH captures the volatility spike but assumes longer-lasting effects, reflecting slower decay 
in variance compared to the other models. In summary, the variance plots highlight the models’ 
ability to capture periods of intense volatility, but with different decay rates and persistence post-
shock, depending on the model structure. 

5. Findings 
 
5.1 Volatility Dynamics: 

Across all models (GARCH, TGARCH, EGARCH, PARCH, and IGARCH), significant volatility 
spikes are observed in both indices, particularly around similar periods. For the NIFTY ESG 100, 
the volatility is more clustered, with repeated spikes throughout the period. In contrast, the MSCI 
Europe ESG Leaders index shows one pronounced spike followed by a relatively stable volatility 
period with smaller fluctuations. The volatility clustering evident in both indices aligns with 
common financial market behavior, where high volatility tends to cluster around significant 
events or periods of financial distress. This supports the argument that market shocks do not 
dissipate immediately but rather persist, creating periods of high volatility. The NIFTY ESG 100 
demonstrates more frequent volatility spikes, indicating the possibility of more frequent economic 
events or shocks in the Indian market, while MSCI Europe ESG Leaders shows a sharp, isolated 
spike, suggesting a more contained but significant market event in Europe. 
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5.2 Leverage Effect: 

The TGARCH and EGARCH models are designed to capture the leverage effect, where negative 
market shocks result in a higher increase in volatility than positive shocks. The conditional 
variance plots for these models in both indices show sharp increases in volatility, which may 
indicate the presence of leverage effects, particularly in response to large market downturns. The 
pronounced spikes in the TGARCH and EGARCH models suggest that negative shocks, such as 
significant sell-offs or downturns, result in disproportionate increases in volatility. This 
asymmetry is critical for markets like the NIFTY ESG 100 and MSCI Europe ESG Leaders, where 
risk perception can escalate sharply during downturns, causing volatility to rise more than during 
upswings. The leverage effect observed may suggest that market participants in these indices react 
more strongly to bad news, increasing volatility following negative market movements. 

5.3 Asymmetric Effect: 

The TGARCH and EGARCH models show asymmetry in volatility response to positive and 
negative shocks, which is more pronounced for NIFTY ESG 100 than for MSCI Europe ESG 
Leaders. For instance, the conditional variance in the TGARCH models shows larger volatility 
spikes, indicating that the market reacts more strongly to negative information or events. The 
asymmetric effect is an important finding as it demonstrates that negative news or events tend to 
have a larger impact on market volatility compared to positive news. In the NIFTY ESG 100, the 
frequent and significant spikes in volatility suggest that the Indian market is more sensitive to 
asymmetric shocks, potentially due to higher market speculation or less mature market structures. 
For the MSCI Europe ESG Leaders, the asymmetry appears more isolated, indicating that while 
negative events do lead to increased volatility, the market tends to recover more steadily 
compared to the Indian index. This may reflect differences in market depth, regulatory 
environment, and the investor base between these two regions. 

5.4 Spillover Effect: 

The prolonged periods of elevated volatility in the IGARCH models, especially for MSCI Europe 
ESG Leaders, indicate that volatility shocks have long-lasting effects, even after the initial shock 
has passed. The persistence of volatility in the IGARCH model suggests that volatility spillover 
may be a factor, particularly in global indices like MSCI Europe ESG Leaders, where volatility 
from one market can spill over into others. Volatility spillover is the transmission of volatility 
from one market to another, and it is more likely in globally interconnected markets. The 
IGARCH model's persistent volatility in MSCI Europe ESG Leaders may indicate that volatility 
in one European country or sector could spread across the region, keeping the overall volatility 
elevated. In contrast, the NIFTY ESG 100 shows more localized spikes in volatility, suggesting 
less pronounced spillover effects. This could be due to the relatively more insulated nature of the 



International Journal of Innovation Studies 8(2) (2024) 

  

229 
 

Indian market compared to Europe, where markets are more integrated and susceptible to global 
events. 

The findings from the conditional variance plots across the GARCH-type models highlight 
important features of volatility, including the leverage and asymmetric effects, as well as the 
potential for volatility spillover. The Indian market (NIFTY ESG 100) shows more frequent and 
sharper volatility clusters, with pronounced leverage and asymmetric effects. On the other hand, 
the European market (MSCI Europe ESG Leaders) experiences fewer but more significant 
volatility spikes, with prolonged persistence in volatility, possibly due to spillover effects from 
interconnected global markets. Understanding these dynamics is crucial for investors and 
policymakers to effectively manage risk, especially in periods of financial instability. By 
incorporating models like TGARCH and EGARCH, market participants can better anticipate 
asymmetric volatility reactions, while IGARCH can provide insights into the long-term 
persistence of volatility, allowing for more informed hedging and risk management strategies. 

6. Suggestions 

While the current models (GARCH, TGARCH, EGARCH, PARCH, and IGARCH) provide 
valuable insights into volatility, adding more sophisticated models such as Component GARCH 
(CGARCH) or Multivariate GARCH (MGARCH) could offer a more granular understanding of long-
term and short-term volatility components. MGARCH models, in particular, can account for the 
co-movement between multiple assets or indices, which could be beneficial for analyzing the 
spillover effect between different markets (e.g., between Europe and India). 

The current models are based on daily or monthly observations. By utilizing high-frequency 
intraday data, the models could capture intraday volatility patterns, leading to a more accurate 
reflection of market movements and more responsive risk management strategies. This is 
particularly important for identifying early signs of volatility shocks and managing them in real-
time. 

The EGARCH and TGARCH models capture the asymmetric effects well, but further improvement 
can be achieved by introducing models like Threshold Autoregressive Conditional Duration (TACD) 
or using Nonlinear GARCH models. These alternatives are designed to more accurately capture 
volatility behavior in response to large shocks or structural breaks, which may help refine the 
understanding of volatility spikes in both markets. 

Since the IGARCH model reveals long-lasting volatility persistence, improving volatility 
forecasting by using machine learning algorithms (e.g., Long Short-Term Memory (LSTM) models 
or Random Forests) could enhance the prediction accuracy of future market volatility. 
Additionally, implementing spillover management strategies, such as cross-hedging or 
diversification across low-correlated assets, can help mitigate the risks associated with volatility 
spillovers in global indices like MSCI Europe ESG Leaders. 
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To complement the volatility models, incorporating macro-economic indicators (like inflation, 
interest rates, or geopolitical risk) or global risk factors (like oil prices or exchange rates) can 
provide a more comprehensive understanding of the volatility dynamics. A GARCH-M (GARCH-
in-Mean) model could be used to explicitly include economic variables and better capture the 
risk-return tradeoff. 

The findings highlight significant volatility spikes that are likely driven by major market events. 
Applying stress testing or scenario analysis to model the impact of extreme market conditions could 
provide a clearer picture of how both markets might react to future extreme shocks. This would 
help investors, particularly those in ESG indices, prepare for unforeseen risks. 

Given the strong leverage and asymmetric effects, especially in the NIFTY ESG 100, it’s 
recommended to develop risk management tools that specifically account for these effects. For 
example, dynamic hedging strategies or option-based risk management tools that are sensitive to 
negative market shocks could be developed to manage portfolio risks more effectively. 

Since these indices are ESG (Environmental, Social, and Governance) based, it may be beneficial 
to explore how ESG factors influence volatility. Investigating whether ESG-related events (such 
as regulatory changes, corporate governance issues, or environmental crises) have a direct impact 
on volatility could provide deeper insights into the risk-return dynamics of ESG portfolios. 

Incorporating these suggestions can enhance the modeling of volatility and improve risk 
management strategies. The introduction of more advanced GARCH models, machine learning 
techniques, and economic indicators could lead to better predictions and a more comprehensive 
understanding of volatility dynamics in both the NIFTY ESG 100 and MSCI Europe ESG Leaders 
indices. This would also enable investors and policymakers to develop more robust strategies for 
managing risks, especially during periods of market stress and global uncertainty. 

7. Conclusion 

The analysis of volatility dynamics for both NIFTY ESG 100 and MSCI Europe ESG Leaders 
using various GARCH-type models highlights key patterns in volatility clustering, leverage 
effects, asymmetric responses, and the persistence of volatility. Both indices exhibit significant 
volatility spikes, with the NIFTY ESG 100 showing more frequent volatility clusters, suggesting 
a more dynamic risk environment compared to the MSCI Europe ESG Leaders, which 
experiences fewer but sharper volatility spikes. The presence of leverage and asymmetric effects, 
particularly in response to negative market shocks, underscores the importance of accounting for 
these factors in volatility modeling and risk management. 

The spillover effect, more evident in the MSCI Europe ESG Leaders index, suggests the 
interconnectedness of global markets and the potential for volatility in one region to influence 
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others. The persistent volatility in the IGARCH model further emphasizes the need for robust 
hedging strategies that can mitigate long-term volatility risks. 

Moving forward, integrating more sophisticated volatility models, high-frequency data, and 
economic factors into the analysis can enhance forecasting accuracy and provide deeper insights 
into the drivers of market volatility. Furthermore, leveraging machine learning techniques and 
stress testing under extreme scenarios can strengthen risk management frameworks, helping 
investors and policymakers make informed decisions in an increasingly volatile global financial 
environment. By understanding these volatility patterns and their underlying causes, better 
hedging strategies can be developed, ensuring more stable and resilient portfolios, especially in 
ESG-focused investments. 
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