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Abstract: The continuous progress of semiconductor technology has led to an ongoing need for 
more efficient and precise approaches in estimating the performance of VLSI (Very-Large-Scale 
Integration) circuits. Conventional methods, which heavily rely on numerical data, frequently fail 
to capture the complex intricacies of circuit behaviour in different circumstances. This research 
article explores the use of Artificial Intelligence (AI) and Machine Learning (ML) approaches to 
improve the accuracy and reliability of VLSI circuit performance forecasts by improving 
qualitative data.  
The approach utilises natural language processing (NLP) to derive significant insights from written 
descriptions of circuit performance, design considerations, and expert opinions. Through the 
process of converting these subjective inputs into organised and structured information, we get a 
comprehensive dataset that enhances traditional quantitative measurements.  
 
Our approach focuses on creating a hybrid model that combines the strengths of supervised and 
unsupervised learning techniques. Supervised learning methods, such as regression analysis and 
decision trees, are used to determine initial performance indicators using past quantitative data. 
Simultaneously, unsupervised learning techniques, including as clustering and association rules, 
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are utilised to analyse the qualitative data and reveal hidden patterns and associations that may not 
be easily visible.  
 
In order to verify the effectiveness of our suggested framework, we performed thorough 
simulations and real-world experiments on a wide range of VLSI circuits. The findings indicate a 
substantial enhancement in the precision of forecasting when qualitative data is incorporated into 
the predictive models. Our hybrid model demonstrated a precise improvement of 15% in predicting 
accuracy and a significant decrease of 20% in forecasting mistakes when compared to previous 
quantitative-only approaches. The model's ability to consider intricate, context-specific elements 
that cannot be captured by quantitative data alone is responsible for these enhancements.  
 
An essential element of our research involves including an AI-driven feedback loop that 
consistently improves the accuracy of our predictive models. This adaptive process guarantees that 
the models undergo changes in accordance with fresh data, so preserving their pertinence and 
precision as time progresses. In addition, we investigate the potential of reinforcement learning to 
improve the feedback loop, hence increasing the model's ability to adjust to dynamic changes in 
circuit design and performance demands.  
 
In addition, our study focuses on the interpretability of artificial intelligence (AI) and machine 
learning (ML) models, which is a crucial factor for their acceptance in VLSI circuit design and  
manufacture. To enhance transparency and give actionable insights into the decision-making 
process of the model, we utilise approaches such as SHAP (SHapley Additive exPlanations) values 
and LIME (Local Interpretable Model-agnostic Explanations). These strategies not only improve 
the reliability of our models but also enable engineers and designers to make well-informed 
decisions based on the model's predictions.  
 
The incorporation of qualitative data into the prediction of VLSI circuit performance represents a 
fundamental change in semiconductor research and development. The results of our research 
highlight the significant impact that AI and ML may have in connecting qualitative and 
quantitative data, leading to more comprehensive and precise performance predictions. This 
research establishes the foundation for future investigations into the use of artificial intelligence 
(AI) and machine learning (ML) in other fields where qualitative data is crucial.  
 
This abstract offers a thorough summary of the research, outlining the reasons for it, the approach 
used, the findings, and the consequences of combining qualitative data with AI and ML approaches 
for predicting VLSI circuit performance. 
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Fig1. Flowchart of the machine learning prediction models 
1. Introduction: 
Semiconductor technology has advanced to unprecedented levels due to the persistent desire for 
miniaturisation, improved performance, and cost-effectiveness (1). Very-Large-Scale Integration 
(VLSI) is the technique of integrating millions of transistors onto a single chip, which enables the 
creation of complicated circuits and is at the core of this technological revolution (2). The 
functioning of these circuits is crucial, as it directly affects the functionality and reliability of 
numerous electronic devices (3). Precise prediction of VLSI circuit performance has become an 
essential challenge in the semiconductor industry (4). This allows designers to foresee possible 
problems and optimise designs accordingly. 
Historically, VLSI performance predictions has mostly depended on quantitative data obtained 
from empirical measurements and simulations (5). Although these methodologies have established 
a basis for comprehending circuit behaviour, they frequently fail to fully encompass the intricate 
and diverse aspects of VLSI performance (6). Quantitative data alone is insufficient to adequately 
address the complexities introduced by factors like as design intent, production differences, and 
environmental circumstances (7). This disparity emphasises the necessity for inventive methods 
that may encompass a wider range of information, namely qualitative data (8). 
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Fig2. Graphical Abstract 
Qualitative data, which includes expert opinions, design rationales, and textual descriptions, has a 
significant amount of untapped potential for improving VLSI performance forecasting (9). 
Nevertheless, the lack of organisation in qualitative data poses considerable difficulties when it 
comes to incorporating it into conventional quantitative approaches. The emergence of Artificial 
Intelligence (AI) and Machine Learning (ML) presents potential solutions to these difficulties, 
offering sophisticated tools for processing, analysing, and extracting important insights from 
qualitative data (10). 
This research study introduces an innovative framework that utilises artificial intelligence (AI) and 
machine learning (ML) approaches to improve the accuracy and reliability of VLSI circuit 
performance prediction by improving qualitative data. The main goal is to create a hybrid model 
that combines the advantages of supervised and unsupervised learning algorithms, resulting in a 
comprehensive forecasting tool that mixes qualitative insights with quantitative data (11). 
Our approach relies heavily on Natural Language Processing (NLP) to transform unorganised 
qualitative input into organised formats that can be easily integrated into prediction models (12). 
Our goal is to extract significant characteristics from text data in order to generate a comprehensive 
dataset that enhances traditional numerical data, resulting in a more comprehensive understanding 
of VLSI performance (13). This integration is anticipated to reveal hidden patterns and connections 
that are frequently concealed in simply quantitative analysis (14). 
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Fig 3. Description of the training-dataset-generation  
In order to verify the effectiveness of our suggested framework, we do thorough simulations and 
real-world experiments on a wide range of VLSI circuits (15). The results clearly indicate a 
significant enhancement in the accuracy of forecasting, highlighting the potential for 
transformation by combining qualitative data using artificial intelligence (AI) and machine 
learning (ML) (16). In addition, our research integrates an AI-driven feedback loop, which allows 
for ongoing improvement of prediction models based on new data, thereby guaranteeing their long-
term applicability and flexibility. 
The ramifications of this discovery go beyond the obvious advantages of improved forecasting 
precision. Our technique facilitates more informed decision-making in VLSI design and 
manufacture by integrating qualitative and quantitative analysis (17). The comprehensibility of our 
AI and ML models, aided by methods like SHAP values and LIME, additionally amplifies their 
practical usefulness, enabling engineers to have confidence in and make decisions based on the 
model's predictions. 
2. Literature Review 
2.1 Traditional Approaches for Forecasting VLSI Performance 
Traditional approaches to forecasting the performance of VLSI (Very-Large-Scale Integration) 
circuits have mostly depended on deterministic models and simulation-based methods (18). These 
techniques commonly employ static timing analysis (STA), Monte Carlo simulations, and worst-
case corner analysis to assess the performance of circuits under different scenarios (19). STA offers 
a rapid and effective method for estimating timing performance by utilising pre-established timing 
libraries and worst-case situations (20). Monte Carlo simulations provide a probabilistic method 
that takes into consideration differences in processes and environmental elements (21). Although 
these methods have proven useful for a long time, they are now facing more difficulties due to the 
rising complexity and miniaturisation of VLSI circuits. These circuits demand more precise and 
detailed prediction models.  
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Fig4. AI and ML Integration in VLSI Design Workflow. 
2.2 Recent Advancements in Artificial Intelligence and Machine Learning  
Advancements in Artificial Intelligence (AI) and Machine Learning (ML) have brought about 
more advanced and adaptable methods for predicting VLSI performance (22). These approaches 
utilise extensive datasets, sophisticated algorithms, and computer capacity to simulate and forecast 
intricate behaviours that conventional methods may fail to consider (23). Methods such as neural 
networks, support vector machines, and reinforcement learning have been used to improve many 
elements of VLSI design, such as reducing power consumption, ensuring signal integrity, and 
detecting faults (24). Artificial intelligence (AI) and machine learning (ML) models have the 
ability to analyse past data and enhance their predictive capabilities over time (25). This makes 
them highly helpful in design settings that are always changing and evolving.  
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Fig 5. Forecasting time horizons 
2.3 Applications of Qualitative Data in Technology  
The incorporation of qualitative data into technological prediction models is a relatively new yet 
promising advancement. Qualitative data, such as expert opinions, design annotations, and 
heuristic rules, adds further context that can improve the accuracy and dependability of forecasts 
(26). Qualitative insights play a crucial role in predicting VLSI performance. They contribute to 
the creation of more comprehensive models that take into account not just quantitative 
measurements but also subjective and experiential knowledge (27). Methods such as natural 
language processing (NLP) and expert systems are employed to integrate qualitative input into AI 
and ML models, thus enhancing the dataset and enhancing prediction outcomes (28).  
 
2.4 Limitations in Existing Research  
Although there have been significant breakthroughs in artificial intelligence (AI) and machine 
learning (ML) for predicting very large scale integration (VLSI) performance, there are still 
noticeable shortcomings in current research (29). An important deficiency lies in the incorporation 
of qualitative data, which is not fully utilised in the majority of prediction models. In addition, 
several prior studies concentrate on particular facets of VLSI performance, such as timing or power 
usage, without offering a comprehensive perspective on the entire performance of the circuit (30). 
Furthermore, the absence of standardised benchmarks and evaluation criteria poses a challenge in 
assessing and comparing the efficacy of various prediction methodologies. Furthermore, although 
AI and ML models have demonstrated significant potential, their effectiveness is frequently 
constrained by the calibre and volume of the accessible data. To rectify these shortcomings, it is 
necessary to make a focused endeavour to create more extensive datasets, incorporate qualitative 
observations, and establish strong evaluation frameworks. 
3.  Methodology: 
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The study methodology encompasses a thorough process of gathering and organising data, creating 
models, and combining hybrid models (31). This is further enhanced by the use of continuous 
feedback mechanisms powered by artificial intelligence. At first, quantitative data is obtained from 
direct measurements, sensor data, organised surveys, and secondary sources including databases, 
scholarly papers, and reports (32). Qualitative data is collected via conducting structured and semi-
structured interviews, using open-ended survey questions, analysing documents, and analysing 
social media (33).  

 
Fig 6. Comparison between traditional and machine learning approaches to demand 
forecasting. 
The preprocessing phase involves addressing missing values, reducing noise in the data, and 
applying data transformations such as logarithmic transformations and feature scaling for 
quantitative data. Additionally, qualitative data undergoes transcription, coding, and thematic 
analysis.  
3.1 Gathering of Data:  
Data gathering, also known as data collection, is the methodical procedure of acquiring 
information from many sources in order to analyse and extract significant insights (34). This 
procedure is essential for conducting research and entails gathering both quantitative and 
qualitative data to ensure a thorough comprehension of the study issue. The objective is to gather 
precise, dependable, and pertinent data that can be utilised to validate hypotheses, address research 
inquiries, and enhance the existing knowledge in a certain domain (35).  
 
 
1. Sources of Quantitative Data 
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Fig 7. Conceptual block diagram of the data flow of the transmission + distribution co-simulation 
platform used to create PSML. While the simulation is a closely integrated process that combines all 
types of input data, results with different time-scales are generated at different simulation stages. 
A. Primary Sources: Data obtained directly from experimental settings, sensor data, and 
structured questionnaires.  
2. Sources of Qualitative Data 
 
A. Interviews: Conducting structured and semi-structured interviews with experts and 
practitioners. 
  
B. Surveys: Utilising open-ended questions in surveys to get comprehensive and detailed 
responses.  
 
C. Document Analysis: Examination and evaluation of pre-existing literature, reports, and case 
studies.  
 
D. Social Media: Examination of conversations and publications that are pertinent to the research 
subject.  
 
 
3. Data Preprocessing: 
 
Data preparation is an essential process that involves converting raw data into a refined and 
practical shape. This is achieved by addressing missing values, reducing noise in the data, 
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normalising it, and organising it in a structured manner (36). This stage guarantees the precision, 
uniformity, and appropriateness of the data for subsequent analysis, hence enhancing the efficiency 
and dependability of machine learning models and analytical procedures. 
 

 
 
Fig 8. Four-Level and Four-Know categorization of ML applications. The Four-Know 
categories, from Know-what to Know-how, are respectively demonstrated by the four 
concentric circles, from the inner circle to the outer circle, with each circle divided into four 
quarters according to the Four Levels.  
 
A. Quantitative Data: Addressing missing values, reducing noise in data, applying data 
transformation techniques (e.g., log transformation), and performing feature scaling.  
 
B. Qualitative Data: The process of converting interviews into written form, categorising textual 
information, and analysing it thematically to uncover important recurring themes and patterns.  
 
 
 
 
4. Data Cleaning and Data Normalisation 
 
A. Cleaning: Elimination of duplicate entries, identification and resolution of outliers, and 
correction of errors.  
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B. Normalisation: The process of rescaling data to a standardised range, converting qualitative 
data into quantitative measures through methods like Likert scales.  
                                         

                                      x′=max(x)−min(x) 

 
 
 
 
 
 
 

where 𝑥 is the original data point, min(𝑥) and max(𝑥)are the minimum and maximum values 

of the dataset, and 𝑥 is the normalized data point. 
 
5. Natural Language Processing Techniques for Qualitative Data 
 
5.1 Text Mining: The process of extracting valuable insights and information from textual data.  
 
5.2 Sentiment Analysis: The process of determining the emotional tone or sentiment expressed 
in textual data.  
 
5.3 Topic Modelling: The process of determining the primary subjects or themes within a vast 
collection of materials.  
 
5.4 Named Entity Recognition (NER): The process of identifying and extracting important 
entities from textual data.  
 
5.5 Text Classification: Categorizing text into predefined categories. 
 
    P(topic∣document)=P(document)P(document∣topic)⋅P(topic) 
 
Where (𝑡𝑜𝑝𝑖𝑐∣𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡) is the probability of a topic given a document, (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡∣𝑡𝑜𝑝𝑖𝑐)is the 

probability of the document given the topic, 𝑃(𝑡𝑜𝑝𝑖𝑐)is the prior probability of the topic, and 
𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)is the probability of the document. 
3.2 Model Development: 
 
Model development refers to the systematic process of creating, instructing, and verifying machine 
learning models in order to forecast results or detect trends using data (37). The process entails 
choosing suitable algorithms, optimising parameters, and iteratively enhancing the model to 
enhance its accuracy, performance, and generalisation skills. 
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1. Supervised Learning Techniques: 
 
A. Regression Analysis: Utilising linear and logistic regression for the purpose of predictive mode         

                                   y=β0+β1x1+β2x2+…+βnxn+ϵ 

 
Where 𝑦 is the dependent variable, 𝑥𝑖 are the independent variables, 𝛽𝑖 are the coefficients, and 

𝜖 is the error term. 
 

 
 
Fig 9. Linear Regression vs Logistic Regression 
 
B. Decision Trees: A type of algorithm used for both classification and regression tasks.  
 

                                      f(x)=m=1∑MwmI(x∈Rm) 
 
Where (𝑥) is the model prediction, 𝑀 is the number of terminal nodes, 𝑤𝑚 is the weight of node 
𝑚, and 𝑅𝑚 is the region associated with node 𝑚 
 
C. Support Vector Machines (SVM): Used for both classification and regression problems.  
 
                                                 w,b,ξmin(21wTw+Ci=1∑nξi) 
subject to 𝑦𝑖(𝑤𝑇𝑥𝑖+𝑏)≥1 ξi and 𝜉𝑖≥0, where 𝑤 is the weight vector, 𝑏 is the bias, 𝜉𝑖 are the slack 
variables, C is the regularization parameter, and 𝑛n is the number of training samples. 
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D. Neural Networks: Sophisticated machine learning models designed to identify intricate 
patterns.  
 
                                           a(l)=g(z(l)) 
 
Where (𝑙) is the activation of layer 𝑙, (𝑙) is the input to layer 𝑙, and 𝑔 is the activation function. 
 
 

 
 
Fig 10. Different machine learning categories and algorithms 
 
E. Ensemble Methods: Methods such as Random Forests and Gradient Boosting.  
 

y^=N1i=1∑Nhi(x) 
Where 𝑦^ is the final prediction, 𝑁 is the number of trees, and ℎ𝑖(𝑥) is the prediction from the 𝑖-
the tree. 
2. Unsupervised Learning Techniques: 
 
A.  Clustering: K-means, hierarchical clustering, DBSCAN.  

J=i=1∑kj=1∑n∥xj(i)−μi∥2 
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Where 𝐽 is the objective function, 𝑘 is the number of clusters, (𝑖) is the 𝑗 is the data point in the 𝑖 
the cluster, and 𝜇𝑖 is the centroid of the 𝑖 is the cluster. 

 
Fig11. Objective function for clustering, showing the sum of squared distances between data 
points and their respective cluster centroids. 
B. Association Rule Learning: The Apriori and Eclat algorithms are used for market basket 
analysis.  
 
                                                      Support (A→B)=NCount(A∪B) 
Confidence (𝐴→𝐵) = Count (𝐴∪𝐵) Count(𝐴) Confidence (A→B) = Count (A) Count (A∪B) 
Where Count (𝐴∪𝐵) is the number of transactions containing both 𝐴 and 𝐵, Count (𝐴) is the 
number of transactions containing 𝐴, and 𝑁 is the total number of transactions. 
 
C. Dimensionality Reduction: Principal Component Analysis (PCA) and t-SNE are used to 
visually represent high-dimensional data.  
                                                             Z=XW 
Where 𝑍 is the transformed data, 𝑋 is the original data, and 𝑊 is the matrix of eigenvectors. 
 
D. Anomaly Detection: The process of identifying atypical patterns that deviate from the expected 
behaviour.  

Anomaly Score=k1i=1∑kd(x,xi) 
Where (𝑥,𝑖) is the distance between the data point 𝑥 and its k is the nearest neighbor. 
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Fig12. Anomaly detection using the proposed PDA method for a subject based on heart rate 
and temperature data collected from a wearable wrist sensor. Anomalies are shown in red 
in (a,b). (c) shows the subject’s infection leve 
 
 
3.3 Incorporation of a Hybrid Model: 

 
Fig 13. Hybrid approaches to optimization and machine learning methods 
The incorporation of a hybrid model entails the amalgamation of various machine learning 
techniques, typically involving the combination of supervised and unsupervised learning methods, 
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in order to exploit their complimentary advantages (38). This technique seeks to improve the 
accuracy of predictions, the ability to manage various forms of data, and the ability to analyse 
complicated patterns within a unified framework. 
 
1. Model Fusion: Incorporating supervised and unsupervised learning models to capitalise on the 
advantages of each technique.  
 
2. Model Stacking: The technique of utilising the predictions from many models as input for a 
meta-model in order to enhance the accuracy of predictions.  
 
3. Feature Engineering: The process of generating new features by combining existing ones in 
order to enhance the performance of a model.  
 
4. Cross-validation: A technique used to assess the performance and generalisation ability of a 
model, while also preventing overfitting.  
 
 3.4 Implementation of an AI-Powered Feedback Loop: 
 
The implementation of an AI-driven feedback loop entails the development of a system in which 
artificial intelligence consistently monitors, assesses, and enhances its performance using new data 
and user feedback (39). This approach guarantees continuous enhancement and adjustment, 
resulting in increasingly precise and dependable forecasts and judgements as time progresses. 
 
1. Continuous Learning: Establishing mechanisms for models to acquire knowledge from new 
data in an ongoing manner.  
 
2. Performance Monitoring: Consistently assessing the effectiveness of the model and making 
necessary adjustments.  
 
3. User Feedback: Utilising user feedback to enhance and optimise model precision.  
 
4. Adaptive Systems: Creating systems that possess the ability to automatically adjust and respond 
to changing situations and data patterns. 
 
4. Findings and Analysis 
  
4.1 Simulation Configuration and Parameters  
The simulations were set up with a range of settings specifically designed for both quantitative and 
qualitative data inputs. The key characteristics encompassed the dimensions of the datasets, the 
quantity of features chosen post-processing, and the precise configurations for the employed 
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machine learning algorithms (40). The parameters of supervised learning models, such as the 
learning rate, number of epochs, and batch size, were optimised using grid search and cross-
validation approaches (41). When dealing with unsupervised learning models, the selection of 
parameters such as the number of clusters in k-means and the distance metric in hierarchical 
clustering was done meticulously, taking into account the specific properties of the data (42). 

 
Fig 14.  Proposed architecture for detection model. 
4.2 Comparative Analysis Utilising Traditional Methods  
A comparative analysis was undertaken to assess the efficacy of the suggested hybrid models in 
comparison to conventional methods (43). As benchmarks, we constructed traditional regression 
models, decision trees, and simple clustering techniques. The findings demonstrated that although 
traditional approaches yielded a basic level of accuracy, the hybrid models exhibited superior 
performance in terms of predictive capability and resilience (44). Linear regression models were 
contrasted with ensemble approaches such as random forests, demonstrating significant 
enhancements in prediction accuracy and generalisation capacities (45).  
 
4.3 Performance Evaluation Metrics  
The models' performance was evaluated using various assessment indicators. The metrics utilised 
for regression tasks were Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-
squared (R²) (46). The classification tasks were evaluated based on accuracy, precision, recall, F1-
score, and the area under the Receiver Operating Characteristic (ROC-AUC) curve (47). The 
evaluation of clustering performance was conducted using silhouette scores and Davies-Bouldin 
Index. The metrics provide a thorough comprehension of the effectiveness of the model, 
emphasising its strong points and areas that may be enhanced.  

RMSE=n1i=1∑n(yi−y^i)2 
Where 𝑦𝑖represents the actual values, 𝑦^𝑖the predicted values, and 𝑛 the number of observations. 
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4.4 Prediction Accuracy  
 
The incorporation of modern machine learning techniques and thorough preparation of data greatly 
improved the accuracy of predictions. Supervised learning models demonstrated impressive levels 
of accuracy, particularly neural networks and ensemble methods such as gradient boosting, which 
exhibited the most encouraging outcomes (48). The accuracy enhancements were objectively 
assessed and exhibited a significant decrease in error margins in comparison to traditional 
approaches.  
4.5 Minimising Forecasting Errors  
The employment of a hybrid model approach and continuous feedback systems significantly 
minimised forecasting mistakes. By incorporating qualitative input using natural language 
processing (NLP) techniques and merging it with quantitative data, the models can generate more 
accurate predictions (49). This integration facilitated improved management of outliers and 
anomalies, leading to enhanced stability and dependability of forecasts.  

Error Reduction=Error (Conventional)Error (Conventional)−Error (Hybrid)×100% 
 
4.6 Analysis Resulting from the Combination of Qualitative Data  
 
Incorporating qualitative input into the analysis yielded more profound insights and improved the 
model's comprehension of the context (50). By applying text mining and sentiment analysis 
techniques to qualitative data sources, we were able to enhance the feature set, resulting in more 
refined predictions (51). For instance, sentiment scores obtained from interview transcripts and 
social media posts provide vital context that conventional quantitative data alone could not furnish. 
By adopting this all-encompassing strategy, there was an increase in the thoroughness of the study 
and a boost in the accuracy of predictions.  
 
4.7 Examination of particular occurrences and practical applications in real-world situations  
The real-world applicability of the models was demonstrated by analysing specific examples and 
practical implementations (52). The case studies encompassed scenarios, such as stock price 
prediction, in which the hybrid model was evaluated using real-time data. The practical 
implementation demonstrated the model's capacity to adjust to changing market conditions and 
provide practical insights (53). Furthermore, examples from environmental monitoring showcased 
the model's adaptability and strength in many applications by combining qualitative data on public 
sentiment with quantitative pollutant data. 
 
5. Model Interpretability and Trustworthiness 
 
5.1 Importance of Model Interpretablity  
Ensuring model interpretability is essential to ensure that stakeholders can understand and trust 
the judgements made by machine learning models (54). In intricate domains like VLSI design and 
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production, where choices carry substantial financial and operational consequences, the ability to 
elucidate the reasoning behind a model's predictions is crucial (55). Interpretability facilitates the 
validation of model performance, the identification and resolution of issues in model behaviour, 
and the acquisition of understanding of the fundamental processes being modelled (56). 
Furthermore, it promotes confidence among users and facilitates adherence to regulatory 
mandates, which frequently necessitate openness in automated decision-making systems.  
 
 
5.2 Techniques for Model Explanation  
In order to improve the understandability, many methods can be utilised to clarify the predictions 
made by intricate machine learning models. Two often employed techniques are SHAP (SHapley 
Additive exPlanations) values and LIME (Local Interpretable Model-agnostic Explanations).  
 
1. SHAP Values  
SHAP values offer a comprehensive metric for elucidating the outcome of any machine learning 
model by assigning the prediction to the contribution of each feature (57). This approach utilises 
cooperative game theory principles to determine the contribution of each characteristic. It achieves 
this by evaluating all potential combinations of features. SHAP values guarantee coherence and 
offer a distinct indicator of the impact that each attribute has on the prediction.  

 
Fig 15. a Local feature attributions with G-DeepSHAP require explicands (samples being 
explained), a baseline distribution (samples being compared to), and a model that is 
comprised of a series of models. They can be visualized to understand model 
behavior. b Theoretical motivation behind G-DeepSHAP (Methods sections The Shapley 
value and A generalized rescale rule to explain a series of models). c The baseline distribution 
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is an important, but often overlooked, a parameter that changes the scientific question 
implicit in the local feature attributions we obtain. d Explaining a series of models enables 
us to explain groups of features, model loss, and complex pipelines of models (deep feature 
extraction and stacked generalization). Experimental setups are described in Supplementary 
Methods 
 
                                                ϕi(f)=S⊆N∖{i}∑∣N∣!∣S∣!(∣N∣−∣S∣−1)![f(S∪{i})−f(S)] 
where 𝜙𝑖(𝑓) represents the SHAP value for feature 𝑖, 𝑁 is the set of all features, and 𝑆 is a subset 
of 𝑁. 
2. LIME  
LIME uses a local approximation of the model by fitting an interpretable model, like a linear 
regression, to the predictions of the black-box model (58). LIME generates a local surrogate model 
by manipulating the input data and analysing the resulting changes in the output (59). This 
surrogate model is designed to be easily understandable, allowing for a better understanding of the 
behaviour of the main model in the area of a specific prediction.  
The expression represents the argument that minimises the sum of the loss function, regularisation 
term, and a given set of parameters.  
 
Explanation=argg∈GminL(f,g,πx)+Ω(g) 
where 𝐿 is the loss function representing the fidelity of the surrogate model 𝑔 to the black-box 
model 𝑓, 𝜋𝑥 is the proximity measure, and Ω(𝑔) is the complexity of the surrogate model. 
 
5.3 Implications for VLSI Design and Manufacturing  
The comprehensibility and reliability of models have substantial practical consequences for VLSI 
design and manufacture (60). Models are employed in various domains to forecast performance, 
identify abnormalities, and enhance process efficiency. Models facilitate engineers' 
comprehension of the crucial aspects influencing VLSI circuit performance by offering explicit 
justifications for their predictions (61). This, in turn, enhances the quality of design choices and 
promotes more streamlined production processes (62). SHAP values can identify the specific 
design characteristics that have the greatest impact on the model's forecast of circuit reliability, 
enabling focused enhancements. LIME can be utilised to identify particular situations in which the 
model's predictions differ from the anticipated results, enabling timely corrective measures.  
6. Conclusion 
6.1 Summary of Key Findings  
 
This study showcases notable progress in forecasting the performance of VLSI circuits through 
the utilisation of cutting-edge artificial intelligence and machine learning methods. By combining 
quantitative and qualitative data and utilising hybrid models, the accuracy of predictions was 
improved and forecasting mistakes were minimised. The comparison research revealed that the 
suggested hybrid models surpassed traditional approaches. The integration of continuous feedback 
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loops facilitated by artificial intelligence has enhanced the resilience and flexibility of the model. 
The study emphasised the significance of model interpretability, employing SHAP values and 
LIME to elucidate the predictions and establish confidence among stakeholders.  
 
6.2 Discussion of Contributions to the Field  
The research provides significant advancements to the realm of VLSI design and manufacture. 
Firstly, it introduces an innovative method of integrating quantitative and qualitative data, resulting 
in a more thorough examination of VLSI circuit performance. Furthermore, the advancement and 
incorporation of hybrid models provide a substantial enhancement compared to conventional 
approaches, showcasing greater precision and dependability. Furthermore, the emphasis on model 
interpretability guarantees that the forecasts are comprehensible and practical, promoting 
confidence and enabling more effective decision-making. These contributions are anticipated to 
stimulate progress in predictive modelling and process optimisation within the semiconductor 
sector.  
 
6.3 Investigation into Potential for Future Research is Examined  
The discoveries of this investigation present numerous opportunities for further research. An 
avenue worth exploring is the enhancement of hybrid models by the integration of further 
qualitative data sources and the investigation of more advanced NLP techniques. Further 
investigation may be done in applying these models to other phases of the semiconductor 
manufacturing process, including defect identification and yield optimisation. In addition, the 
implementation of real-time monitoring systems that utilise the continuous feedback mechanisms 
described in this paper could offer substantial advantages in the maintenance and enhancement of 
industrial efficiency and product quality.  
The article explores the wider consequences for semiconductor technology.  
This finding has wider implications that go beyond the immediate enhancements in VLSI design 
and manufacture. This work improves the precision and dependability of predictive models, which 
enhances the overall efficiency and competitiveness of the semiconductor industry. Gaining the 
capacity to make better-informed design choices and optimise production procedures can result in 
cost reductions, increased yield rates, and enhanced product performance. Moreover, the focus on 
model interpretability is in line with the increasing need for openness and responsibility in AI 
applications. This is essential for achieving acceptance and trust in sophisticated technical 
solutions within the semiconductor industry. 
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