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Abstract
Conversational chatbots have revolutionized educational platforms by providing personalized
support and interactive learning experiences. However, existing intent recognition models in
Learning Management Systems (LMS) like Moodle struggle with ambiguous, context-
dependent queries, leading to inaccuracies in understanding student interactions. This research
proposes a hybrid intent recognition algorithm that combines Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) deep learning models with rule-based verification
to enhance the chatbot's ability to classify intents with higher precision. The primary objective
of this study is to address the limitations of traditional Natural Language Understanding (NLU)
techniques by leveraging deep learning for context retention and rule-based mechanisms for
domain- specific accuracy. The proposed hybrid model was trained using a dataset of student
queries collected from Moodle logs, categorized into 20 intent classes, and processed using
tokenization, text cleaning, and word embeddings (e.g., GloVe, BERT). Comparative
performance analysis against standalone models—Rule-Based, Naive Bayes, LSTM, and
GRU—demonstrated that the hybrid model achieved 92.5% accuracy, significantly
outperforming conventional approaches. Statistical validation using paired t-tests and ANOVA
confirmed the statistical significance of the improvements, with the hybrid model achieving
the highest precision, recall, and F1- score while reducing response time by 20% compared to
LSTM. These findings validate the proposed approach as a robust solution for real-time intent
recognition in educational chatbots, fostering personalized learning, improving student
engagement, and optimizing Moodle’s teaching-learning evaluation processes. Future research
will explore reinforcement learning techniques to dynamically adapt chatbot responses and
expand multilingual support for diverse educational environments.
Keywords: Intent Recognition, Chatbot, Hybrid Model, LSTM, GRU, Rule-Based System,
Natural Language Understanding, Educational Technology, Moodle, Personalized Learning.
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1. INTRODUCTION
In recent years, conversational chatbots have become integral to educational platforms, offering
personalized support and enhancing the learning experience [1]. The integration of chatbots
into Learning Management Systems (LMS) such as Moodle has gained prominence; however,
challenges persist in accurately understanding and responding to complex student queries [2].
Traditional Natural Language Understanding (NLU) algorithms often struggle with ambiguous
or context- dependent queries [3].
To address these challenges, this paper introduces an enhanced intent recognition algorithm
that combines deep learning models—Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU)—with rule-based intent verification [4]. This hybrid approach leverages the
sequential processing strengths of LSTM and GRU models while incorporating rule-based
mechanisms to ensure domain-specific accuracy [5]. The primary objective is to improve the
chatbot's ability to comprehend and classify student queries within Moodle, thereby enhancing
response precision and learning support [6].
The proposed methodology aligns with contemporary research emphasizing the importance of
Al in education. For instance, various studies explore the components and applications of
expert systems in Al, emphasizing the role of chatbots in educational settings [7]. Additionally,
several studies provide a comprehensive overview of intelligent conversational chatbot design
approaches and techniques, informing the development of our hybrid model [8]. Furthermore,
their exploration of chatbot history and taxonomy offers valuable insights into the evolution
and classification of conversational agents, underscoring the relevance of integrating deep
learning with rule-based systems for effective intent recognition [9].
1.1 Problem Statement
While existing intent recognition models based on either deep learning or rule-based
approaches provide partial solutions, they exhibit significant limitations. Rule-based models
struggle with unseen or ambiguous queries, whereas deep learning models require large
amounts of labeled data and may misclassify intent due to a lack of domain-specific contextual
understanding. The challenge is to develop a model that balances adaptability, precision, and
computational efficiency for real-world educational applications.
1.2 Research Objectives
This research focuses on:
1. Developing a Hybrid Model: Combining LSTM and GRU for sequential processing
while integrating rule-based verification for domain-specific accuracy.
2. Enhancing Contextual Understanding: Addressing query ambiguity through deep
learning and rule-based techniques.

3. Improving Response Accuracy and Efficiency: Reducing false positives and
computational overhead while maintaining high precision and recall.
4. Validating Performance Improvements: Conducting extensive testing and statistical

validation against traditional NLU models to demonstrate effectiveness.

1.3 Contributions of the Study

The key contributions of this research are:

. Improved Intent Recognition Accuracy: The proposed hybrid model significantly
outperforms standalone deep learning or rule-based approaches.
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. Context-Aware Query Understanding: The integration of LSTM and GRU enables
better sequential data interpretation for more precise intent detection.
. Domain-Specific Verification: The rule-based component ensures Moodle- related

queries are accurately classified, reducing misinterpretation in educational contexts.

. Optimized Processing Efficiency: The hybrid approach balances computational
complexity and response time, making it suitable for real-time chatbot applications.

1.4  Paper Organization

The remainder of this paper is structured as follows: Section 2 reviews related work on intent
recognition algorithms in educational chatbots. Section 3 presents the proposed hybrid model’s
architecture and design. Section 4 details the methodologies used for data processing and model
training. Section 5 provides a proof-of-concept implementation and validation scenarios.
Section 6 discusses the experimental setup, including dataset details and evaluation metrics.
Section 7 analyzes the results, comparing the hybrid model’s performance with existing
approaches. Section 8 explores statistical validation techniques used to confirm the significance
of improvements. Section 9 concludes the paper with key findings and outlines future research
directions to enhance chatbot capabilities in Moodle and other LMS platforms.

2. LITERATURE REVIEW

2.1 Introduction to Intent Recognition in Personalized Learning

Intent recognition is a core component of Artificial Intelligence (AI) in educational chatbots,
enabling systems to understand students' learning needs and deliver tailored responses.
Personalized learning systems rely on Natural Language Understanding (NLU) techniques to
accurately identify and respond to student queries, enhancing engagement and learning
outcomes [10].

Traditional intent recognition approaches in Learning Management Systems (LMS), such as
rule-based methods and machine learning models, struggle to handle ambiguous queries
effectively [11]. With advancements in deep learning, particularly Long Short-Term Memory
(LSTM), Gated Recurrent Units (GRU), and transformer models, the accuracy of intent
classification has improved [12]. However, hybrid approaches combining rule-based
techniques with deep learning have shown the most promise in delivering precise and adaptable
responses for personalized learning environments [13].

This section explores state-of-the-art intent recognition models and their applications in
adaptive learning systems.

2.2 Deep Learning-Based Approaches for Intent Recognition

Deep learning models have significantly improved the ability of Al tutors to classify student
intent accurately. Key architectures used in personalized learning environments include:

2.2.1 LSTM and GRU for Sequential Learning

LSTM and GRU are recurrent neural networks (RNNs) that capture sequential dependencies
in student interactions, allowing Al-based tutors to infer context [14]. LSTM is particularly
effective for handling long-term dependencies in conversations, while GRU offers
computational efficiency, making it ideal for real-time chatbot applications [15].

For example, Li et al. (2022) developed a multi-task neural network model that combines
LSTM and attention mechanisms to improve personalized learning assistants, resulting in a
15% increase in intent classification accuracy compared to conventional models [16].
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2.2.2 Transformer Models (BERT and GPT-Based Systems)
Transformer models, such as Bidirectional Encoder Representations from Transformers
(BERT) and Generative Pre-trained Transformers (GPT), have revolutionized intent
recognition by capturing contextual meaning and semantic relationships in queries [17].
. Zhang and Zhang (2019) proposed an ensemble deep active learning approach that
integrates transformers for multi-intent classification, achieving 92.3% accuracy in student
queries [18].
. Maity and Deroy (2024) highlighted the use of GPT-based models in Al tutors, where
generative Al facilitates adaptive content recommendations based on student intent and past
interactions [19].
23 Hybrid Approaches: Combining Rule-Based and Deep Learning Models
Hybrid models integrate rule-based knowledge with deep learning techniques, leveraging
domain expertise to improve intent classification precision [20].
. Pearce et al. (2023) introduced a hybrid intent recognition system using transformers
and symbolic reasoning, demonstrating a 20% improvement in response accuracy for
personalized learning chatbots [21].
. Kulkarni and Gonzales (2023) proposed an adaptive Al tutor that combines
reinforcement learning with intent recognition, enabling real-time adaptation to students’
learning styles [22].
These studies suggest that hybrid intent recognition approaches offer higher accuracy than
standalone deep learning models by ensuring domain specificity and interpretability.
2.4  Personalized Learning via Intent Recognition Algorithms
Intent recognition enables Al tutors to adapt to student needs by providing personalized
learning pathways [23]. Key applications include:
2.4.1 Adaptive Learning Pathways
By analyzing intent and learning progress, Al-driven tutors dynamically adjust course materials
to meet individual needs. Okur et al. (2022) developed a game-based personalized learning Al,
demonstrating that adaptive intent recognition leads to a 30% improvement in learning
outcomes [24].
2.4.2 Context-Aware Student Support
Intent recognition systems are also used for context-aware student assistance, such as
assignment submission reminders and Al-based grade predictions [25]. Studies indicate that
students using intent-driven personalized tutors show a 25% increase in learning engagement
compared to those using static LMS systems [26].
2.5 Challenges in Intent Recognition for Personalized Learning
Despite advancements, several challenges persist:
. Handling Ambiguous Queries: Al tutors often struggle with context- dependent or
vague student queries, requiring multi-turn dialog processing [27].

. Data Scarcity: Limited labeled training data for educational intent classification hinders
model performance [28].
. Computational Overhead: Transformer models like BERT and GPT require significant

computational power, affecting real-time response efficiency [29].
2.6  Natural Language Understanding (NLU) in Educational Al Systems
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NLU enables Al tutors to understand student queries, improving response accuracy. Pre-trained
models like BERT, RoBERTa, and GPT-based architectures enhance intent recognition by
capturing semantic meaning [30]. Key Improvement: Context- aware Al models show 15%
higher accuracy in educational chatbots [31].
2.7  Knowledge Graphs and Ontology-Based Intent Recognition
Knowledge graphs (KGs) and Ontologies structure domain knowledge, helping Al
contextualize student queries. Hybrid AI models reduce false positives, leading to better intent
recognition [32]. Key Improvement: Ontology-driven Al tutors improve accuracy by 12-18%
in adaptive learning environments [33].
2.8  Reinforcement Learning (RL) for Adaptive Intent Recognition
Reinforcement Learning (RL) enables Al tutors to learn from user interactions and refine intent
classification over time. Instead of relying on static rules, RL-based models adapt dynamically
based on feedback [34]. Key Improvement: 25% increase in personalized learning efficiency
in RL-based Al tutors [35].
2.9  Context-Aware Al and Multi-Intent Handling
Many student queries contain multiple intents. Traditional single-intent models fail to classify
them correctly. Multi-intent detection allows Al tutors to respond accurately to complex student
queries [36]. Key Improvement: 88.7% accuracy in resolving ambiguous queries using multi-
intent classification [37].
2.10 Zero-Shot and Few-Shot Intent Recognition in Personalized Learning
Zero-Shot Learning (ZSL) and Few-Shot Learning (FSL) enable Al tutors to recognize new
intents without labeled examples. These models generalize better to previously unseen learning
queries [38]. Key Improvement: 92.5% generalization accuracy using zero-shot intent
classification in Al tutors [39].

Table 1. Key Improvements in AI Chatbots for Education

Concept Why It Matters Key Improvement
NLU for AI Tutors | Enhances chatbot accuracy in | 15% accuracy boost in Al-driven
personalized learning. responses.[30], [31]
Knowledge Graphs | Improves intent | 12-18% accuracy increase using
for Al classification by ontology-driven
contextualizing queries. models.[32], [33]
Reinforcement Enables Al tutors to adapt|25% efficiency improvement in
Learning dynamically. chatbot learning.[34], [35]
Multi-Intent Al chatbots process complex, | 88.7% accuracy in multi-intent
Handling multi- | detection.[36], [37]
intent queries.
Zero-Shot Learning | Al models generalize to new | 92.5% accuracy for
queries without training. unseen

queries.[38], [39]
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As shown in Table 1, advancements in Al chatbots, such as improved Natural Language
Understanding (NLU) and knowledge graphs, have significantly enhanced chatbot accuracy
and intent classification, leading to better personalized learning experiences. Additionally,
techniques like reinforcement learning and zero-shot learning have enabled Al tutors to
dynamically adapt and generalize to new queries with high accuracy, achieving up to 92.5%
accuracy for previously unseen queries [30- 39].
2.11 Existing Algorithms
. Rule-Based Systems: Use predefined patterns to identify intents. While effective for
simple queries, these systems lack flexibility and fail with complex language structures [40].
Example: An Al tutor using a rule-based system might recognize the intent behind "What are
my exam dates?" only if it matches a predefined pattern like "exam schedule". However, if a
student asks "When do I have to take my test?", the system may fail to recognize the intent due
to lack of flexibility [41].
. Machine Learning Models: Algorithms like Naive Bayes and Support Vector Machines
(SVM) have been employed, offering improved performance over rule-based systems but
requiring substantial labeled data [42]. Example: An ML-based Al tutor can learn from past
student interactions. If a student frequently asks "How do I improve my grades?", the model
may classify it under "study recommendations", even if the wording differs slightly [43].
. Deep Learning Approaches: Models such as Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU) are deep learning modelshave shown superior performance in
handling sequential data but may lack interpretability and precision in niche contexts like
education [44]. A deep learning-based Al tutor can track a student’s previous questions and
adjust responses dynamically. If a student asks "How do I register for exams?" and later asks
"What happens if [ miss the deadline?", the system retains context and provides more relevant
responses [45].

Table 2. Comparison of Intent Recognition Approaches

Approach Advantages Limitations
Rule-Based Simple and interpretable. Fails with complex queries and
Systems Works well for structured | natural language variations.

and repetitive queries. Requires manual updates for

new patterns [40], [41].

Machine Learns from data and Requires large labeled datasets
Learning adapts to new intents. for training. Fails with highly
Models (SVM, | More scalable than rule- context-dependent queries [42],
Naive Bayes) based systems. [43].
Deep Learning | Handles long-term Requires high computational
(LSTM, GRU) | dependencies in resources. Lacks

conversations. Best for interpretability, making

context-aware Al debugging difficult [44], [45].

tutors.

As shown in Table 2, different intent recognition approaches have varying strengths and
limitations. While rule-based systems offer simplicity and interpretability, they struggle with
complex queries and require manual updates [40-43]. In contrast, deep learning models like
LSTMs and GRUs excel at handling long-term dependencies in conversations, making them
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ideal for context-aware Al tutors, though they demand high computational resources and lack
interpretability [44], [45].

2.12 Research Gap

While deep learning models excel at capturing contextual dependencies, their performance is
often limited by data sparsity and their inability to handle rare intents effectively. Low-resource
languages and niche queries remain a challenge for intent recognition models. Conversely, rule-
based approaches provide high precision by following explicit rules, but they lack adaptability
to new or evolving user queries. These systems struggle with natural language variations and
require constant manual updates. A hybrid approach that combines the strengths of both deep
learning and rule-based techniques can mitigate these limitations. By leveraging deep learning
for generalization and rule-based models for precision, Al-driven intent recognition can
achieve higher accuracy and adaptability [46].

The review highlights deep learning, hybrid, and transformer-based approaches as the most
effective strategies for intent recognition in personalized learning. Future advancements should
prioritize adaptive Al models that can dynamically adjust learning recommendations based on
student intent and engagement levels.

3. PROPOSED ENHANCED ALGORITHM

The hybrid algorithm enhancement steps are supported by recent studies in Al-driven intent
recognition [47].

The hybrid algorithm enhancement steps for the proposed model focus on combining the
strengths of deep learning (LSTM and GRU) and rule-based systems.

3.1 Algorithm Design

Hybrid models integrating deep learning and rule-based approaches have been shown to
improve intent classification accuracy and adaptability in Al-driven learning environments
[48].

The intent recognition algorithm is designed to combine the benefits of both deep learning and
rule-based approaches, ensuring high accuracy and adaptability while maintaining
computational efficiency. The integration of LSTM, GRU, and rule-based verification enables
the system to handle both general and domain-specific queries effectively.

The proposed intent recognition algorithm integrates:

3.1.1 Deep Learning Models (LSTM and GRU):

. LSTM captures long-term dependencies in sequential data, making it suitable for
context-rich queries.

. GRU offers computational efficiency while maintaining accuracy, allowing faster
processing.

3.1.2 Rule-Based Intent Verification:

. Augments the deep learning model by applying predefined rules to ensure accuracy for

domain-specific intents, such as queries related to assignments, grades, or deadlines in Moodle.
3.2 Formal Algorithm Representation (Pseudocode)

Recent studies highlight the effectiveness of LSTM and GRU in sequential data processing for
real-time applications [49].
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Input: Query text (Q), Pre-trained embeddings, Rule-Based Intent Library (R)
Output: Predicted Intent (l)

Step 1: Preprocess Input

a. Convert Q to lowercase.

b. Remove special characters and stop words.

c. Tokenize Q into words.

d. Convert tokens to vectors using pre-trained embeddings.
Step 2: Deep Learning Processing

a. Pass tokenized input through LSTM layer:
i. Capture long-term dependencies in the query.
ii. Output LSTM embeddings (L_out).
b. Pass tokenized input through GRU layer:
i. Capture sequential context with reduced computation.
ii. Output GRU embeddings (G_out).
Step 3: Combine Outputs
a. Concatenate LSTM output (L_out) and GRU output (G_out).
b. Apply dense layers to process the combined output.
c. Use softmax activation to predict intent probabilities.
Step 4: Rule-Based Verification

a. Extract predicted intent (P) from deep learning model with the highest
confidence score.
b. Cross-verify P with predefined rules (R):
i. If any keyword in R matches Q, override P with rule-based intent.
ii. If no match, retain P as the final intent.
Step 5: Return Final Intent (1)

33 Workflow

1. Preprocessing: Input text is tokenized and preprocessed using techniques such as
stemming, stop-word removal, and part-of-speech tagging.

2. Feature Extraction: Contextual embeddings are generated using word embeddings (e.g.,
Word2Vec or BERT).

3. Deep Learning Processing:

0 The preprocessed input is fed into the LSTM layer to capture contextual dependencies.
0 The GRU layer refines the output, ensuring computational efficiency.

4. Rule-Based Verification:

0 The output intent is cross-validated against a rule-based intent library to ensure domain-

specific accuracy.

5. Intent Prediction: The final intent is predicted, combining the outputs from both models.
3.4 Hybrid Algorithm Enhancement Steps

The following enhancements are based on findings from previous research in hybrid Al models
for intent recognition.

The proposed intent recognition algorithm integrates:

3.4.1 Data Preparation
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3.4.1.1 Data Collection:

. Aggregated real-world queries from Moodle’s usage logs and categorized them into 20
intent classes such as assignment submission, grade inquiries, and feedback requests.

. Ensured the dataset includes a mix of simple and complex queries to reflect diverse use
cases.

3.4.1.2 Data Preprocessing:

. Cleaned the input text by removing stop words, special characters, and punctuation.

. Applied stemming and lemmatization to standardize terms.

. Used tokenization to split input sentences into meaningful tokens for analysis.

3.4.1.3 Embedding Generation:

. Pre-trained GloVe embeddings (6B tokens, 300 dimensions) were initially used for

shallow context representation. Later, BERT (base-uncased) embeddings were fine-tuned to
capture deeper semantic and contextual nuances, especially for multi-intent queries. Empirical
evaluation showed BERT embeddings offered a performance gain in precision and F1-score.
Therefore, BERT was selected for the final model.

3.4.2 Deep Learning Model Development

3.4.2.1 LSTM Layer:

. Incorporated Long Short-Term Memory (LSTM) to capture long-term dependencies
and sequential patterns in the data.
. Enabled the model to handle context-rich queries by remembering dependencies over

longer text sequences.
3.4.2.2 GRU Layer:

. Added Gated Recurrent Units (GRU) for computational efficiency while preserving
accuracy.

. Reduced the complexity of LSTM by eliminating redundant memory cell gates.

. GRU helps optimize response time while maintaining high precision in predictions.

3.4.3 GRU Architecture Optimization:

To ensure efficient training and real-time inference, the GRU layer was optimized for
performance without compromising accuracy. The number of GRU units was reduced from
128 to 64, resulting in a 15% reduction in computation time. Dropout regularization was
applied with a rate of 0.3 to mitigate overfitting. Furthermore, the RMSprop optimizer was
fine-tuned by adjusting the learning rate to stabilize training convergence. These changes
collectively contributed to faster response times in chatbot interactions on the Moodle platform.
3.4.4 Rule-Based Intent Verification

. Designed a domain-specific rules library based on Moodle's context (e.g., terms related
to “assignments,” “grades,” or “feedback”).

. Purpose: Ensure that the hybrid system cross-verifies deep learning predictions with
predefined rules to improve domain-specific accuracy.

. Example: If a query includes keywords like "submit assignment," the rule-based layer
verifies if the intent aligns with the "Assignment Submission" class before finalizing the output.
4 Reduced false positives by addressing edge cases and domain-specific ambiguities that

deep learning alone might overlook.
3.5 Ensemble Voting Mechanism
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. Combined the outputs from the LSTM and GRU models using a weighted ensemble
voting mechanism:

0 Assigned higher weights to the GRU predictions due to its computational efficiency.

0 Ensured robust predictions by taking into account both long-term dependencies
(LSTM) and the computational refinements of GRU.

. Finalized the predicted intent based on the highest combined confidence score.

3.6  Performance Optimization
3.6.1 Response Time Optimization:

. Reduced computation overhead by optimizing the GRU layer and parallelizing tasks
using an NVIDIA GPU.

. This decreased the response time to 40 ms, making it efficient for real- time chatbot
interactions.

3.6.2 Batch Processing:

. Processed multiple queries simultaneously during training to improve scalability and

reduce latency during model inference.

3.7  Testing and Evaluation

. Evaluation of hybrid models in educational AI settings has demonstrated their
superiority in accuracy and response time compared to standalone models.

3.7.1 Test Dataset:

. Evaluated the hybrid model on a test dataset of unseen queries to validate its
generalization capabilities.

3.7.2 Evaluation Metrics:

. Measured performance using metrics like accuracy, precision, recall, F1- score, and
response time. A 5-fold stratified cross-validation was employed. Each fold-maintained class
distribution and was used to compute average precision, recall, and Fl-score. The train-test
split used 80% training and 20% testing. Model training averaged 2.3 hours per fold.

. Benchmarked the hybrid model against standalone models (Rule- Based, Naive Bayes,
LSTM, GRU).

3.7.3 Achieved 92.5% accuracy, outperforming individual models while maintaining
computational efficiency.

4. METHODOLOGIES USED

4.1 Hybrid Model Development

The methodology combines both supervised deep learning and rule-based systems to enhance
accuracy. Key steps include:

4.1.1 Data Collection: Queries from Moodle's usage logs were aggregated and categorized
into distinct intent classes to ensure comprehensive intent recognition.

The dataset consisted of 10,000 Moodle queries. Stratified sampling ensured balanced class
distribution across 20 intent labels. Synthetic Minority Oversampling Technique (SMOTE) was
applied to underrepresented classes to mitigate imbalance and improve classifier
generalization.

4.1.2 Data Preprocessing: Text cleaning, stemming, and tokenization were applied using NLP
techniques to ensure uniformity in inputs, reducing noise and improving model generalization.
4.1.3 Model Training:
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. The LSTM and GRU models were trained on labeled datasets using cross-entropy loss,
a standard loss function for classification tasks.
. Pre-trained word embeddings (e.g., GloVe, BERT) were used to initialize the

embedding layers, capturing contextual meaning from text efficiently.

4.1.4 Rule Integration: A library of domain-specific rules was designed to validate and refine
the intent output, ensuring higher precision for domain-specific queries.

4.1.5 Model Testing and Evaluation: Metrics such as accuracy, precision, recall, and F1-score
were evaluated on a test dataset to measure model effectiveness.

4.2 Experimental Setup

4.2.1 Software Tools:

4.2.1.1 TensorFlow and Keras: Used for building, training, and deploying the LSTM and GRU
models. These libraries offer flexibility and robust deep learning capabilities.

4.2.1.2 NLTK and spaCy: Used for natural language preprocessing, such as tokenization and
part-of-speech tagging, ensuring high-quality inputs for the models.

4.2.2 Hardware Environment:

4.2.2.1 NVIDIA GPU: All deep learning models were trained using an NVIDIA RTX 3060
GPU with 12GB VRAM. This setup accelerated training, particularly for large datasets and
deep models like LSTM and GRU, and reduced inference latency, enabling the model to
support real-time responses in Moodle-based chatbots.

5. PROOF OF CONCEPT

To validate the enhanced hybrid algorithm's capability to improve intent recognition in a
chatbot designed for Moodle, the following objectives were pursued:

1. Combining LSTM and GRU for sequential and contextual understanding to improve
performance over traditional models.

2. Utilizing a rule-based layer for domain-specific verification, ensuring that Al- driven
predictions align with Moodle-related queries.

3. Ensuring improved accuracy, precision, recall, F1-score, and reduced response time
compared to existing models.

This section explains the systematic steps taken to design and implement the proposed
algorithm, combining supervised deep learning and rule-based systems.

Step 1: Data Preparation

. Dataset:

0 Queries from Moodle logs categorized into 20 intent classes such as assignment
submission, grade inquiry, and feedback request.

0 10,000 queries, split into 80% training and 20% testing datasets.

. Preprocessing:

0 Text cleaning: Remove special characters and stop words.

0 Tokenization: Split queries into meaningful tokens.

0 Word embeddings: Use pre-trained embeddings (e.g., GloVe, BERT) for semantic
understanding.

Step 2: Model Development

. Deep Learning Layers:
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0 LSTM: Captures long-term dependencies and context from queries.
GRU: Processes sequences efficiently with reduced computational cost.
. Rule-Based Layer:
0 Domain-specific keywords (e.g., “submit assignment,” “check grades”) are predefined
to verify and refine deep learning predictions.
. Ensemble Mechanism:
0 Combine LSTM and GRU outputs using a weighted voting mechanism.
0 Select the intent with the highest combined confidence score.

Step 3: Implementation
Tools and Frameworks:

0 TensorFlow and Keras: For building and training deep learning models.
0 Python libraries like NLTK and spaCy: For preprocessing.

0 NVIDIA GPU: For optimized model training and faster inference.

. Training:

0 Train LSTM and GRU models on labeled data using cross-entropy loss.
0 Fine-tune pre-trained embeddings for domain-specific queries.

Step 4: Evaluation Metrics
The hybrid model was evaluated using:

. Accuracy: Proportion of correctly predicted intents.

. Precision: Relevance of the predictions made.

. Recall: Completeness of the predictions.

. F1-Score: Balance between precision and recall.

. Response Time: Time taken for the model to predict the intent.

5.1 Validation Scenarios

Scenario 1: Assignment Submission Query

. Input: "What is the deadline to submit my assignment?"
Deep Learning Prediction:

0 LSTM predicts "assignment submission" with 90% confidence.

0 GRU predicts "assignment help" with 87% confidence.

. Rule-Based Verification:

0 Matches keywords "submit" and "assignment" to refine the intent to "assignment
submission."

. Final Intent: "Assignment Submission."

Scenario 2: Grade Inquiry Query

. Input: "How can I check my grades?"

. Deep Learning Prediction:

0 Both LSTM and GRU predict "grade inquiry" with confidence scores of 89% and 91%,
respectively.

. Rule-Based Verification:
0 Confirms "grade" and "check" in the query as relevant keywords.
. Final Intent: "Grade Inquiry."

After intent classification, response generation is handled through a hybrid strategy. For
straightforward queries that match FAQ-type intents, a rule-based template selector is used.
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For ambiguous or multi-turn queries, responses are dynamically generated using a sequence-
to-sequence model trained on past Moodle interaction data. This ensures the chatbot provides
relevant, contextual, and efficient replies aligned with the detected intent.

6. EXPERIMENTAL SETUP

6.1 Dataset: A custom dataset was created using real-world queries collected from Moodle’s
teaching-learning environment. The dataset consists of:

. 1,000 Queries categorized into 20 intent classes (e.g., assignment submission, grade
inquiry, feedback request).
. Training/Testing Split: 80% training and 20% testing data.

6.2 Performance Metrics
The model was evaluated using the following metrics:

. Accuracy: Measures the proportion of correctly predicted intents.
. Precision and Recall: Evaluate the relevance and completeness of intent recognition.
. Processing Time: Benchmarks computational efficiency.

6.3  Benchmark Models

The proposed hybrid model was compared against several baseline and deep learning models:
. Baseline Models: Rule-based, Naive Bayes, SVM.

O Naive Bayes was included as a classical baseline to contrast with modern deep learning
methods. Its simplicity and interpretability provide a valuable point of comparison, particularly
for illustrating the gains achieved by more complex hybrid architectures.

. Deep Learning Models: LSTM, GRU, BERT.

O This study additionally fine-tuned a BERT model on the same dataset. While BERT
achieved comparable accuracy (91.7%), it required 3x more training time and higher
computational resources, making our hybrid model a more efficient solution for Moodle
deployments.

7. RESULTS AND ANALYSIS

7.1 Performance Comparison

The hybrid model was tested against standalone models and showed significant improvements:
Table 3. Performance Comparison of Intent Recognition Models

Model Accuracy Precision Recall F1-Score | Response
(%o) (%) (%) (%) Time (ms)
Rule-Based 754 72.3 70.1 71.2 5
Naive Bayes 78.2 74.5 73.9 74.2 15
LSTM 85.7 84.2 83.8 84.0 50
GRU 87.1 85.4 84.9 85.1 45
P
roposed 92.5 91.8 91.2 91.5 40
Hybrid
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As shown in Table 3, the proposed hybrid model significantly outperforms standalone models
in accuracy, precision, recall, and F1-score, achieving 92.5% accuracy compared to LSTM
(85.7%) and GRU (87.1%). The integration of rule-based verification enhances domain-
specific predictions, particularly for Moodle-related queries. Additionally, the hybrid model
maintains an efficient response time of 40ms, leveraging GRU’s computational efficiency and
ensemble mechanisms to support real-time interaction.
7.2 Comparative Metrics for the Models

7.2.1 Comparative Response Time Analysis

The hybrid model achieves faster response times than standalone LSTM or GRU, with only a
marginal increase over rule-based systems. This balance between accuracy and efficiency
makes it ideal for real-time applications like chatbots. The Proposed Hybrid algorithm reduced
response time to 40ms, a 20% improvement compared to standalone GRU (45ms) and a 20%
improvement over LSTM (50ms), while achieving significantly higher accuracy (92.5%) than
both.

7.2.2 Quantifying Improvement Levels

The percentage improvement was calculated using:

Standalone Model Rsponse Time — Hybrid Model Response Time

Improvement Standalone Model Response Time X100

Example Improvements:

50-40

Compared to LSTM: Improvement = ___X 100 = 20%
50
Compared to GRU: Improvement = >_** X 100 = 11.1%
45

The hybrid model achieved a 20% reduction in response time compared to LSTM and an 11.1%
reduction compared to GRU while maintaining superior performance metrics.

7.2.3 Emphasizing Real-Time Capability

Reducing response time while maintaining high accuracy enhances user experience in real-
time applications like chatbots. The hybrid model ensures chatbots efficiently handle queries,
even during peak loads, providing speed and reliability in dynamic environments. The hybrid
algorithm improves accuracy by 6.8% over LSTM, demonstrating its ability to balance
computational efficiency and prediction performance for real-time educational chatbot
systems.
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Figure 1. Performance Metrics Comparison of Intent Recognition Models

As illustrated in Figure 1, the bar charts for accuracy, precision, recall, and F1-score highlight
the superior performance of the proposed hybrid model compared to standalone models. The
hybrid model achieves the highest accuracy (92.5%) and F1- score (91.5%), demonstrating its
effectiveness in balancing precision and recall. The integration of rule-based verification with
deep learning improves domain-specific predictions while maintaining computational
efficiency, making it well-suited for real- time interactions.

7.2.4 Response Time Comparison
Bar Chart Representation: Response time comparison among LSTM, GRU, and the Proposed
Hybrid model, highlighting efficiency gains.

Response Time Comparison

60

--------

Response Time (ms)

10~

0

LSTM GRU Proposec Hybrid
Models

Figure 2. Response Time Comparison of Intent Recognition Models
As shown in Figure 2, the response time for LSTM, GRU, and the proposed hybrid model is
compared using a bar chart, emphasizing the efficiency gains of the hybrid approach. While
LSTM exhibits the highest response time at 50ms, GRU improves efficiency with 45ms. The
proposed hybrid model further optimizes performance, reducing response time to 40ms by
leveraging GRU’s computational efficiency and an ensemble mechanism, making it more
suitable for real-time interactions.
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7.2.5 Combined Comparison (Response Time & Accuracy)
7.2.5.1 Visualization: A combined chart illustrating how the hybrid model achieves higher
accuracy while reducing response time compared to LSTM and GRU.

Response Time and Accuracy Comparison

Figure 3. Combined Comparison of Response Time and Accuracy

As illustrated in Figure 3, the hybrid model demonstrates a significant improvement by
achieving the highest accuracy (92.5%) while maintaining a reduced response time (40ms)
compared to LSTM (85.7% accuracy, S0ms response time) and GRU (87.1% accuracy, 45ms
response time). This visualization highlights the hybrid model’s ability to balance accuracy and

efficiency, making it an optimal choice for real-time intent recognition in Al-driven systems.

7.3  Advantages of the Proposed Hybrid Algorithm

. Accuracy Boost: Combines LSTM and GRU strengths, improving intent recognition
accuracy.

. Domain-Specific Relevance: Rule-based verification ensures high precision for
Moodle-related intents.

. Efficiency: Optimized GRU processing reduces computational overhead.

. Robustness: Handles complex and ambiguous queries effectively through its hybrid
architecture.

7.4  How It Compares Standalone Models
7.4.1 Rule-Based Systems:

. Limited to predefined patterns and fails with unseen or ambiguous queries.

. The hybrid model adapts by integrating LSTM and GRU for contextual understanding.
7.4.2 Naive Bayes:

. Struggles with sequential context and long-term dependencies.

. The hybrid model captures sequential and contextual information using deep learning
layers.

7.4.3 LSTM and GRU:

. Standalone LSTM is computationally expensive; GRU is faster but less robust.

. The hybrid model combines their strengths, achieving superior accuracy and efficiency.
7.5  Insights

. The hybrid model outperforms standalone models in both accuracy and efficiency.

. Rule-based verification ensures domain-specific accuracy, reducing false positives

. Processing time is optimized due to GRU’s computational efficiency.
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8 STATISTICAL VALIDATION
8.1 Hypothesis Testing

1. Null Hypothesis (Ho): There is no significant difference between the performance of
the hybrid model and the standalone models (LSTM, GRU).
2. Alternative Hypothesis (Hi): The hybrid model significantly outperforms standalone

models in accuracy, precision, recall, and response time.
8.2 Methodology

. Paired t-test:
0 Used to compare the performance metrics (accuracy, precision, recall, response time)
of the hybrid model against LSTM and GRU.
0 Determines the significance of performance improvements.
. Result
Table 4. Paired T-Test Results
Metric Model A Model B Hybrid p- value| Significance
(LSTM) (GRU) Model
Accuracy (%) 85.7 87.1 92.5 <0.01 | Significant
Precision (%) 84.2 85.4 91.8 <0.01 | Significant
Recall (%) 83.8 84.9 91.2 <0.01 | Significant
Response Time 50 45 40 <0.05 | Significant
(ms)

As shown in table 4, the paired t-test confirms the hybrid model's significant improvement over
LSTM and GRU, with p-values below 0.01 for accuracy, precision, and recall, and below 0.05
for response time.

83  ANOVA Test

. Used to compare the mean accuracy values of the hybrid, LSTM, and GRU models
across multiple trials.
. Significance Level (a): 0.05 (95% confidence interval).
Result
Table 5. ANOVA Test Results
Metric F-Statistic p-value Significance
Accuracy 125.32 <0.001 Significant

As shown in table 5, the ANOVA test indicates a significant difference in accuracy across
models, with an F-statistic of 125.32 and a p-value below 0.001, validating the hybrid model’s
superiority.

8.4  Interpretation

1. Significant Differences Confirmed:

0 p-values from t-tests and ANOVA confirm statistically significant performance
improvements by the hybrid model.
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2. Hybrid Model Superiority:
0 The Hybrid model achieved the highest mean accuracy (92.5%),
surpassing LSTM (85.7%) and GRU (87.1%) with lower variability.
3. Efficiency:
0 The Hybrid model reduced response time to 40ms, significantly faster than LSTM
(50ms) and GRU (45ms), confirming its computational efficiency.

The results confirm that the hybrid model significantly outperforms standalone models in all
critical metrics, validating its superiority for real-time intent recognition in Moodle chatbots.
The proposed hybrid intent recognition algorithm effectively combines the strengths of deep
learning and rule-based systems to overcome the limitations of standalone models. The
inclusion of LSTM and GRU ensures a comprehensive understanding of both long-term and
short-term dependencies in user queries, while the rule-based layer enhances domain-specific
accuracy. Experimental results demonstrate significant improvements in accuracy, precision,
recall, and response time, validating the hybrid model's effectiveness in real-world educational
scenarios.

Furthermore, the integration of the hybrid model into Moodle fosters enhanced interaction
between students and the system, promoting personalized learning experiences. The study
highlights how hybrid models can address challenges such as ambiguous queries, rare intent
handling, and computational inefficiency in traditional approaches.

The results confirm that the hybrid model significantly outperforms standalone models in all
critical metrics, validating its superiority for real-time intent recognition in Moodle chatbots.

9 CONTRIBUTION
9.1 Key Contributions

. Improved Accuracy: Achieved a 5-10% accuracy boost over existing models.

. Context Handling: Enhanced the chatbot’s ability to understand complex queries.

. Domain-Specific Precision: Leveraged rule-based verification for Moodle- specific
intents.

. Efficiency: Optimized processing time, enabling real-time responses.

9.2 Implications for Moodle

The enhanced algorithm enables personalized learning by accurately identifying student needs
and providing tailored recommendations. This improvement can transform Moodle’s teaching-
learning evaluation process, fostering greater student engagement and satisfaction.

10 CONCLUSION AND FUTURE WORK

10.1 Conclusion

This paper introduced a hybrid intent recognition algorithm combining deep learning and rule-
based approaches, tailored for Moodle. Experimental results demonstrated significant
improvements in accuracy, efficiency, and personalization. The algorithm effectively addresses
the limitations of traditional NLU methods, making it a robust solution for real-world
educational applications. The integration of the hybrid model into Moodle enables personalized
learning by accurately identifying student needs and providing tailored recommendations.
These advancements establish a strong foundation for future research in intelligent educational
chatbots. Intent detection directly drives personalized learning pathways by recommending
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topic-specific materials and reminders based on classified intent. This makes Moodle more
responsive to individual student needs.

10.2  Future Work

Building on the success of the hybrid model, future work will focus on enhancing context
management using reinforcement learning (RL). By integrating RL techniques, the chatbot can
dynamically adapt to user behavior and preferences over time, further improving intent
recognition and user engagement. Specific areas of exploration include: Dynamic Context
Management: Employ RL to enable the chatbot to retain and utilize context across multi-turn
conversations, enhancing its ability to respond accurately to complex queries. Expanding the
dataset to include more diverse queries. Personalization: Use RL to learn individual user
preferences, tailoring responses and recommendations to meet specific needs. Multilingual
Support: Extend the hybrid model to support multiple languages, addressing the diverse needs
of global educational platforms. Sentiment Analysis: Incorporate sentiment analysis to refine
intent recognition and provide empathetic responses, fostering better user experiences.

These enhancements will ensure that the chatbot continues to evolve, addressing emerging
challenges and opportunities in the field of educational technology. This contribution serves as
a foundation for developing intelligent, context-aware chatbots that can revolutionize the
educational experience within LMS platforms like Moodle.
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