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Abstract 
Conversational chatbots have revolutionized educational platforms by providing personalized 
support and interactive learning experiences. However, existing intent recognition models in 
Learning Management Systems (LMS) like Moodle struggle with ambiguous, context-
dependent queries, leading to inaccuracies in understanding student interactions. This research 
proposes a hybrid intent recognition algorithm that combines Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU) deep learning models with rule-based verification 
to enhance the chatbot's ability to classify intents with higher precision. The primary objective 
of this study is to address the limitations of traditional Natural Language Understanding (NLU) 
techniques by leveraging deep learning for context retention and rule-based mechanisms for 
domain- specific accuracy. The proposed hybrid model was trained using a dataset of student 
queries collected from Moodle logs, categorized into 20 intent classes, and processed using 
tokenization, text cleaning, and word embeddings (e.g., GloVe, BERT). Comparative 
performance analysis against standalone models—Rule-Based, Naïve Bayes, LSTM, and 
GRU—demonstrated that the hybrid model achieved 92.5% accuracy, significantly 
outperforming conventional approaches. Statistical validation using paired t-tests and ANOVA 
confirmed the statistical significance of the improvements, with the hybrid model achieving 
the highest precision, recall, and F1- score while reducing response time by 20% compared to 
LSTM. These findings validate the proposed approach as a robust solution for real-time intent 
recognition in educational chatbots, fostering personalized learning, improving student 
engagement, and optimizing Moodle’s teaching-learning evaluation processes. Future research 
will explore reinforcement learning techniques to dynamically adapt chatbot responses and 
expand multilingual support for diverse educational environments. 
Keywords: Intent Recognition, Chatbot, Hybrid Model, LSTM, GRU, Rule-Based System, 
Natural Language Understanding, Educational Technology, Moodle, Personalized Learning. 
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1. INTRODUCTION 
In recent years, conversational chatbots have become integral to educational platforms, offering 
personalized support and enhancing the learning experience [1]. The integration of chatbots 
into Learning Management Systems (LMS) such as Moodle has gained prominence; however, 
challenges persist in accurately understanding and responding to complex student queries [2]. 
Traditional Natural Language Understanding (NLU) algorithms often struggle with ambiguous 
or context- dependent queries [3]. 
To address these challenges, this paper introduces an enhanced intent recognition algorithm 
that combines deep learning models—Long Short-Term Memory (LSTM) and Gated Recurrent 
Unit (GRU)—with rule-based intent verification [4]. This hybrid approach leverages the 
sequential processing strengths of LSTM and GRU models while incorporating rule-based 
mechanisms to ensure domain-specific accuracy [5]. The primary objective is to improve the 
chatbot's ability to comprehend and classify student queries within Moodle, thereby enhancing 
response precision and learning support [6]. 
The proposed methodology aligns with contemporary research emphasizing the importance of 
AI in education. For instance, various studies explore the components and applications of 
expert systems in AI, emphasizing the role of chatbots in educational settings [7]. Additionally, 
several studies provide a comprehensive overview of intelligent conversational chatbot design 
approaches and techniques, informing the development of our hybrid model [8]. Furthermore, 
their exploration of chatbot history and taxonomy offers valuable insights into the evolution 
and classification of conversational agents, underscoring the relevance of integrating deep 
learning with rule-based systems for effective intent recognition [9]. 
1.1 Problem Statement 
While existing intent recognition models based on either deep learning or rule-based 
approaches provide partial solutions, they exhibit significant limitations. Rule-based models 
struggle with unseen or ambiguous queries, whereas deep learning models require large 
amounts of labeled data and may misclassify intent due to a lack of domain-specific contextual 
understanding. The challenge is to develop a model that balances adaptability, precision, and 
computational efficiency for real-world educational applications. 
1.2 Research Objectives 
This research focuses on: 
1. Developing a Hybrid Model: Combining LSTM and GRU for sequential processing 
while integrating rule-based verification for domain-specific accuracy. 
2. Enhancing Contextual Understanding: Addressing query ambiguity through deep 
learning and rule-based techniques. 
3. Improving Response Accuracy and Efficiency: Reducing false positives and 
computational overhead while maintaining high precision and recall. 
4. Validating Performance Improvements: Conducting extensive testing and statistical 
validation against traditional NLU models to demonstrate effectiveness. 
1.3 Contributions of the Study 
The key contributions of this research are: 
• Improved Intent Recognition Accuracy: The proposed hybrid model significantly 
outperforms standalone deep learning or rule-based approaches. 
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• Context-Aware Query Understanding: The integration of LSTM and GRU enables 
better sequential data interpretation for more precise intent detection. 
• Domain-Specific Verification: The rule-based component ensures Moodle- related 
queries are accurately classified, reducing misinterpretation in educational contexts. 
• Optimized Processing Efficiency: The hybrid approach balances computational 
complexity and response time, making it suitable for real-time chatbot applications. 
1.4 Paper Organization 
The remainder of this paper is structured as follows: Section 2 reviews related work on intent 
recognition algorithms in educational chatbots. Section 3 presents the proposed hybrid model’s 
architecture and design. Section 4 details the methodologies used for data processing and model 
training. Section 5 provides a proof-of-concept implementation and validation scenarios. 
Section 6 discusses the experimental setup, including dataset details and evaluation metrics. 
Section 7 analyzes the results, comparing the hybrid model’s performance with existing 
approaches. Section 8 explores statistical validation techniques used to confirm the significance 
of improvements. Section 9 concludes the paper with key findings and outlines future research 
directions to enhance chatbot capabilities in Moodle and other LMS platforms. 
2. LITERATURE REVIEW 
2.1 Introduction to Intent Recognition in Personalized Learning 
Intent recognition is a core component of Artificial Intelligence (AI) in educational chatbots, 
enabling systems to understand students' learning needs and deliver tailored responses. 
Personalized learning systems rely on Natural Language Understanding (NLU) techniques to 
accurately identify and respond to student queries, enhancing engagement and learning 
outcomes [10]. 
Traditional intent recognition approaches in Learning Management Systems (LMS), such as 
rule-based methods and machine learning models, struggle to handle ambiguous queries 
effectively [11]. With advancements in deep learning, particularly Long Short-Term Memory 
(LSTM), Gated Recurrent Units (GRU), and transformer models, the accuracy of intent 
classification has improved [12]. However, hybrid approaches combining rule-based 
techniques with deep learning have shown the most promise in delivering precise and adaptable 
responses for personalized learning environments [13]. 
This section explores state-of-the-art intent recognition models and their applications in 
adaptive learning systems. 
2.2 Deep Learning-Based Approaches for Intent Recognition 
Deep learning models have significantly improved the ability of AI tutors to classify student 
intent accurately. Key architectures used in personalized learning environments include: 
2.2.1 LSTM and GRU for Sequential Learning 
LSTM and GRU are recurrent neural networks (RNNs) that capture sequential dependencies 
in student interactions, allowing AI-based tutors to infer context [14]. LSTM is particularly 
effective for handling long-term dependencies in conversations, while GRU offers 
computational efficiency, making it ideal for real-time chatbot applications [15]. 
For example, Li et al. (2022) developed a multi-task neural network model that combines 
LSTM and attention mechanisms to improve personalized learning assistants, resulting in a 
15% increase in intent classification accuracy compared to conventional models [16]. 
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2.2.2 Transformer Models (BERT and GPT-Based Systems) 
Transformer models, such as Bidirectional Encoder Representations from Transformers 
(BERT) and Generative Pre-trained Transformers (GPT), have revolutionized intent 
recognition by capturing contextual meaning and semantic relationships in queries [17]. 
• Zhang and Zhang (2019) proposed an ensemble deep active learning approach that 
integrates transformers for multi-intent classification, achieving 92.3% accuracy in student 
queries [18]. 
• Maity and Deroy (2024) highlighted the use of GPT-based models in AI tutors, where 
generative AI facilitates adaptive content recommendations based on student intent and past 
interactions [19]. 
2.3 Hybrid Approaches: Combining Rule-Based and Deep Learning Models 
Hybrid models integrate rule-based knowledge with deep learning techniques, leveraging 
domain expertise to improve intent classification precision [20]. 
• Pearce et al. (2023) introduced a hybrid intent recognition system using transformers 
and symbolic reasoning, demonstrating a 20% improvement in response accuracy for 
personalized learning chatbots [21]. 
• Kulkarni and Gonzales (2023) proposed an adaptive AI tutor that combines 
reinforcement learning with intent recognition, enabling real-time adaptation to students’ 
learning styles [22]. 
These studies suggest that hybrid intent recognition approaches offer higher accuracy than 
standalone deep learning models by ensuring domain specificity and interpretability. 
2.4 Personalized Learning via Intent Recognition Algorithms 
Intent recognition enables AI tutors to adapt to student needs by providing personalized 
learning pathways [23]. Key applications include: 
2.4.1 Adaptive Learning Pathways 
By analyzing intent and learning progress, AI-driven tutors dynamically adjust course materials 
to meet individual needs. Okur et al. (2022) developed a game-based personalized learning AI, 
demonstrating that adaptive intent recognition leads to a 30% improvement in learning 
outcomes [24]. 
2.4.2 Context-Aware Student Support 
Intent recognition systems are also used for context-aware student assistance, such as 
assignment submission reminders and AI-based grade predictions [25]. Studies indicate that 
students using intent-driven personalized tutors show a 25% increase in learning engagement 
compared to those using static LMS systems [26]. 
2.5 Challenges in Intent Recognition for Personalized Learning 
Despite advancements, several challenges persist: 
• Handling Ambiguous Queries: AI tutors often struggle with context- dependent or 
vague student queries, requiring multi-turn dialog processing [27]. 
• Data Scarcity: Limited labeled training data for educational intent classification hinders 
model performance [28]. 
• Computational Overhead: Transformer models like BERT and GPT require significant 
computational power, affecting real-time response efficiency [29]. 
2.6 Natural Language Understanding (NLU) in Educational AI Systems 
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NLU enables AI tutors to understand student queries, improving response accuracy. Pre-trained 
models like BERT, RoBERTa, and GPT-based architectures enhance intent recognition by 
capturing semantic meaning [30]. Key Improvement: Context- aware AI models show 15% 
higher accuracy in educational chatbots [31]. 
2.7 Knowledge Graphs and Ontology-Based Intent Recognition 
Knowledge graphs (KGs) and Ontologies structure domain knowledge, helping AI 
contextualize student queries. Hybrid AI models reduce false positives, leading to better intent 
recognition [32]. Key Improvement: Ontology-driven AI tutors improve accuracy by 12-18% 
in adaptive learning environments [33]. 
2.8 Reinforcement Learning (RL) for Adaptive Intent Recognition 
Reinforcement Learning (RL) enables AI tutors to learn from user interactions and refine intent 
classification over time. Instead of relying on static rules, RL-based models adapt dynamically 
based on feedback [34]. Key Improvement: 25% increase in personalized learning efficiency 
in RL-based AI tutors [35]. 
2.9 Context-Aware AI and Multi-Intent Handling 
Many student queries contain multiple intents. Traditional single-intent models fail to classify 
them correctly. Multi-intent detection allows AI tutors to respond accurately to complex student 
queries [36]. Key Improvement: 88.7% accuracy in resolving ambiguous queries using multi-
intent classification [37]. 
2.10 Zero-Shot and Few-Shot Intent Recognition in Personalized Learning 
Zero-Shot Learning (ZSL) and Few-Shot Learning (FSL) enable AI tutors to recognize new 
intents without labeled examples. These models generalize better to previously unseen learning 
queries [38]. Key Improvement: 92.5% generalization accuracy using zero-shot intent 
classification in AI tutors [39]. 

Table 1. Key Improvements in AI Chatbots for Education 
Concept Why It Matters Key Improvement 

NLU for AI Tutors Enhances chatbot accuracy in 
personalized learning. 

15% accuracy boost in AI-driven 
responses.[30], [31] 

Knowledge Graphs 
for AI 

Improves intent 
classification  by 
contextualizing queries. 

12-18% accuracy increase using
 ontology-driven 
models.[32], [33] 

Reinforcement 
Learning 

Enables AI tutors to adapt 
dynamically. 

25% efficiency improvement in 
chatbot learning.[34], [35] 

Multi-Intent 
Handling 

AI chatbots process complex,
 multi-
intent queries. 

88.7% accuracy in multi-intent 
detection.[36], [37] 

Zero-Shot Learning AI models generalize to new 
queries without training. 

92.5% accuracy for
 unseen 
queries.[38], [39] 
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As shown in Table 1, advancements in AI chatbots, such as improved Natural Language 
Understanding (NLU) and knowledge graphs, have significantly enhanced chatbot accuracy 
and intent classification, leading to better personalized learning experiences. Additionally, 
techniques like reinforcement learning and zero-shot learning have enabled AI tutors to 
dynamically adapt and generalize to new queries with high accuracy, achieving up to 92.5% 
accuracy for previously unseen queries [30- 39]. 
2.11 Existing Algorithms 
• Rule-Based Systems: Use predefined patterns to identify intents. While effective for 
simple queries, these systems lack flexibility and fail with complex language structures [40]. 
Example: An AI tutor using a rule-based system might recognize the intent behind "What are 
my exam dates?" only if it matches a predefined pattern like "exam schedule". However, if a 
student asks "When do I have to take my test?", the system may fail to recognize the intent due 
to lack of flexibility [41]. 
• Machine Learning Models: Algorithms like Naïve Bayes and Support Vector Machines 
(SVM) have been employed, offering improved performance over rule-based systems but 
requiring substantial labeled data [42]. Example: An ML-based AI tutor can learn from past 
student interactions. If a student frequently asks "How do I improve my grades?", the model 
may classify it under "study recommendations", even if the wording differs slightly [43]. 
• Deep Learning Approaches: Models such as Long Short-Term Memory (LSTM) and 
Gated Recurrent Units (GRU) are deep learning modelshave shown superior performance in 
handling sequential data but may lack interpretability and precision in niche contexts like 
education [44]. A deep learning-based AI tutor can track a student’s previous questions and 
adjust responses dynamically. If a student asks "How do I register for exams?" and later asks 
"What happens if I miss the deadline?", the system retains context and provides more relevant 
responses [45]. 

Table 2. Comparison of Intent Recognition Approaches 

 
As shown in Table 2, different intent recognition approaches have varying strengths and 
limitations. While rule-based systems offer simplicity and interpretability, they struggle with 
complex queries and require manual updates [40-43]. In contrast, deep learning models like 
LSTMs and GRUs excel at handling long-term dependencies in conversations, making them 

 

Approach Advantages Limitations 
Rule-Based 
Systems 

Simple and interpretable. 
Works well for structured 
and repetitive queries. 

Fails with complex queries and 
natural language variations. 
Requires manual updates for 
new patterns [40], [41]. 

Machine 
Learning 
Models (SVM, 
Naïve Bayes) 

Learns from data and 
adapts to new intents. 
More scalable than rule- 
based systems. 

Requires large labeled datasets 
for training. Fails with highly 
context-dependent queries [42], 
[43]. 

Deep Learning 
(LSTM, GRU) 

Handles long-term 
dependencies in 
conversations. Best for 
context-aware AI 
tutors. 

Requires high computational 
resources. Lacks 
interpretability, making 
debugging difficult [44], [45]. 
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ideal for context-aware AI tutors, though they demand high computational resources and lack 
interpretability [44], [45]. 
2.12 Research Gap 
While deep learning models excel at capturing contextual dependencies, their performance is 
often limited by data sparsity and their inability to handle rare intents effectively. Low-resource 
languages and niche queries remain a challenge for intent recognition models. Conversely, rule-
based approaches provide high precision by following explicit rules, but they lack adaptability 
to new or evolving user queries. These systems struggle with natural language variations and 
require constant manual updates. A hybrid approach that combines the strengths of both deep 
learning and rule-based techniques can mitigate these limitations. By leveraging deep learning 
for generalization and rule-based models for precision, AI-driven intent recognition can 
achieve higher accuracy and adaptability [46]. 
The review highlights deep learning, hybrid, and transformer-based approaches as the most 
effective strategies for intent recognition in personalized learning. Future advancements should 
prioritize adaptive AI models that can dynamically adjust learning recommendations based on 
student intent and engagement levels. 
 
3. PROPOSED ENHANCED ALGORITHM 
The hybrid algorithm enhancement steps are supported by recent studies in AI-driven intent 
recognition [47]. 
The hybrid algorithm enhancement steps for the proposed model focus on combining the 
strengths of deep learning (LSTM and GRU) and rule-based systems. 
3.1 Algorithm Design 
Hybrid models integrating deep learning and rule-based approaches have been shown to 
improve intent classification accuracy and adaptability in AI-driven learning environments 
[48]. 
The intent recognition algorithm is designed to combine the benefits of both deep learning and 
rule-based approaches, ensuring high accuracy and adaptability while maintaining 
computational efficiency. The integration of LSTM, GRU, and rule-based verification enables 
the system to handle both general and domain-specific queries effectively.  
The proposed intent recognition algorithm integrates: 
3.1.1 Deep Learning Models (LSTM and GRU): 
• LSTM captures long-term dependencies in sequential data, making it suitable for 
context-rich queries. 
• GRU offers computational efficiency while maintaining accuracy, allowing faster 
processing.  
3.1.2 Rule-Based Intent Verification: 
• Augments the deep learning model by applying predefined rules to ensure accuracy for 
domain-specific intents, such as queries related to assignments, grades, or deadlines in Moodle. 
3.2 Formal Algorithm Representation (Pseudocode) 
Recent studies highlight the effectiveness of LSTM and GRU in sequential data processing for 
real-time applications [49]. 
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3.3 Workflow 
1. Preprocessing: Input text is tokenized and preprocessed using techniques such as 
stemming, stop-word removal, and part-of-speech tagging. 
2. Feature Extraction: Contextual embeddings are generated using word embeddings (e.g., 
Word2Vec or BERT). 
3. Deep Learning Processing: 
o The preprocessed input is fed into the LSTM layer to capture contextual dependencies. 
o The GRU layer refines the output, ensuring computational efficiency. 
4. Rule-Based Verification: 
o The output intent is cross-validated against a rule-based intent library to ensure domain-
specific accuracy. 
5. Intent Prediction: The final intent is predicted, combining the outputs from both models. 
3.4 Hybrid Algorithm Enhancement Steps 
The following enhancements are based on findings from previous research in hybrid AI models 
for intent recognition. 
The proposed intent recognition algorithm integrates: 
3.4.1 Data Preparation 

Input: Query text (Q), Pre-trained embeddings, Rule-Based Intent Library (R) 
Output: Predicted Intent (I) 

Step 1: Preprocess Input 

a. Convert Q to lowercase. 
b. Remove special characters and stop words. 
c. Tokenize Q into words. 
d. Convert tokens to vectors using pre-trained embeddings. 

Step 2: Deep Learning Processing 

a. Pass tokenized input through LSTM layer: 
i. Capture long-term dependencies in the query. 
ii. Output LSTM embeddings (L_out). 

b. Pass tokenized input through GRU layer: 
i. Capture sequential context with reduced computation. 
ii. Output GRU embeddings (G_out). 

Step 3: Combine Outputs 
a. Concatenate LSTM output (L_out) and GRU output (G_out). 
b. Apply dense layers to process the combined output. 
c. Use softmax activation to predict intent probabilities. 

Step 4: Rule-Based Verification 

a. Extract predicted intent (P) from deep learning model with the highest 
confidence score. 

b. Cross-verify P with predefined rules (R): 
i. If any keyword in R matches Q, override P with rule-based intent. 
ii. If no match, retain P as the final intent. 

Step 5: Return Final Intent (I) 
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3.4.1.1 Data Collection: 
• Aggregated real-world queries from Moodle’s usage logs and categorized them into 20 
intent classes such as assignment submission, grade inquiries, and feedback requests. 
• Ensured the dataset includes a mix of simple and complex queries to reflect diverse use 
cases. 
3.4.1.2 Data Preprocessing: 
• Cleaned the input text by removing stop words, special characters, and punctuation. 
• Applied stemming and lemmatization to standardize terms. 
• Used tokenization to split input sentences into meaningful tokens for analysis. 
3.4.1.3 Embedding Generation: 
• Pre-trained GloVe embeddings (6B tokens, 300 dimensions) were initially used for 
shallow context representation. Later, BERT (base-uncased) embeddings were fine-tuned to 
capture deeper semantic and contextual nuances, especially for multi-intent queries. Empirical 
evaluation showed BERT embeddings offered a performance gain in precision and F1-score. 
Therefore, BERT was selected for the final model. 
3.4.2 Deep Learning Model Development 
3.4.2.1 LSTM Layer: 
• Incorporated Long Short-Term Memory (LSTM) to capture long-term dependencies 
and sequential patterns in the data. 
• Enabled the model to handle context-rich queries by remembering dependencies over 
longer text sequences. 
3.4.2.2 GRU Layer: 
• Added Gated Recurrent Units (GRU) for computational efficiency while preserving 
accuracy. 
• Reduced the complexity of LSTM by eliminating redundant memory cell gates. 
• GRU helps optimize response time while maintaining high precision in predictions. 
 
3.4.3 GRU Architecture Optimization: 
 To ensure efficient training and real-time inference, the GRU layer was optimized for 
performance without compromising accuracy. The number of GRU units was reduced from 
128 to 64, resulting in a 15% reduction in computation time. Dropout regularization was 
applied with a rate of 0.3 to mitigate overfitting. Furthermore, the RMSprop optimizer was 
fine-tuned by adjusting the learning rate to stabilize training convergence. These changes 
collectively contributed to faster response times in chatbot interactions on the Moodle platform. 
3.4.4 Rule-Based Intent Verification 
• Designed a domain-specific rules library based on Moodle's context (e.g., terms related 
to “assignments,” “grades,” or “feedback”). 
• Purpose: Ensure that the hybrid system cross-verifies deep learning predictions with 
predefined rules to improve domain-specific accuracy. 
• Example: If a query includes keywords like "submit assignment," the rule-based layer 
verifies if the intent aligns with the "Assignment Submission" class before finalizing the output. 
4 Reduced false positives by addressing edge cases and domain-specific ambiguities that 
deep learning alone might overlook. 
3.5 Ensemble Voting Mechanism 
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• Combined the outputs from the LSTM and GRU models using a weighted ensemble 
voting mechanism: 
o Assigned higher weights to the GRU predictions due to its computational efficiency. 
o Ensured robust predictions by taking into account both long-term dependencies 
(LSTM) and the computational refinements of GRU. 
• Finalized the predicted intent based on the highest combined confidence score. 
3.6 Performance Optimization 
3.6.1 Response Time Optimization: 
• Reduced computation overhead by optimizing the GRU layer and parallelizing tasks 
using an NVIDIA GPU. 
• This decreased the response time to 40 ms, making it efficient for real- time chatbot 
interactions. 
3.6.2 Batch Processing: 
• Processed multiple queries simultaneously during training to improve scalability and 
reduce latency during model inference. 
3.7 Testing and Evaluation 
• Evaluation of hybrid models in educational AI settings has demonstrated their 
superiority in accuracy and response time compared to standalone models. 
3.7.1 Test Dataset: 
• Evaluated the hybrid model on a test dataset of unseen queries to validate its 
generalization capabilities. 
3.7.2 Evaluation Metrics: 
• Measured performance using metrics like accuracy, precision, recall, F1- score, and 
response time. A 5-fold stratified cross-validation was employed. Each fold-maintained class 
distribution and was used to compute average precision, recall, and F1-score. The train-test 
split used 80% training and 20% testing. Model training averaged 2.3 hours per fold. 
• Benchmarked the hybrid model against standalone models (Rule- Based, Naïve Bayes, 
LSTM, GRU). 
3.7.3 Achieved 92.5% accuracy, outperforming individual models while maintaining 
computational efficiency. 
 
4. METHODOLOGIES USED 
4.1 Hybrid Model Development 
The methodology combines both supervised deep learning and rule-based systems to enhance 
accuracy. Key steps include: 
4.1.1 Data Collection: Queries from Moodle's usage logs were aggregated and categorized 
into distinct intent classes to ensure comprehensive intent recognition.  
The dataset consisted of 10,000 Moodle queries. Stratified sampling ensured balanced class 
distribution across 20 intent labels. Synthetic Minority Oversampling Technique (SMOTE) was 
applied to underrepresented classes to mitigate imbalance and improve classifier 
generalization. 
4.1.2 Data Preprocessing: Text cleaning, stemming, and tokenization were applied using NLP 
techniques to ensure uniformity in inputs, reducing noise and improving model generalization. 
4.1.3 Model Training: 
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• The LSTM and GRU models were trained on labeled datasets using cross-entropy loss, 
a standard loss function for classification tasks. 
• Pre-trained word embeddings (e.g., GloVe, BERT) were used to initialize the 
embedding layers, capturing contextual meaning from text efficiently.  
4.1.4 Rule Integration: A library of domain-specific rules was designed to validate and refine 
the intent output, ensuring higher precision for domain-specific queries. 
4.1.5 Model Testing and Evaluation: Metrics such as accuracy, precision, recall, and F1-score 
were evaluated on a test dataset to measure model effectiveness. 
 
4.2 Experimental Setup 
4.2.1 Software Tools: 
4.2.1.1 TensorFlow and Keras: Used for building, training, and deploying the LSTM and GRU 
models. These libraries offer flexibility and robust deep learning capabilities. 
4.2.1.2 NLTK and spaCy: Used for natural language preprocessing, such as tokenization and 
part-of-speech tagging, ensuring high-quality inputs for the models. 
4.2.2 Hardware Environment: 
4.2.2.1 NVIDIA GPU: All deep learning models were trained using an NVIDIA RTX 3060 
GPU with 12GB VRAM. This setup accelerated training, particularly for large datasets and 
deep models like LSTM and GRU, and reduced inference latency, enabling the model to 
support real-time responses in Moodle-based chatbots. 
 
5. PROOF OF CONCEPT 
To validate the enhanced hybrid algorithm's capability to improve intent recognition in a 
chatbot designed for Moodle, the following objectives were pursued: 
1. Combining LSTM and GRU for sequential and contextual understanding to improve 
performance over traditional models. 
2. Utilizing a rule-based layer for domain-specific verification, ensuring that AI- driven 
predictions align with Moodle-related queries. 
3. Ensuring improved accuracy, precision, recall, F1-score, and reduced response time 
compared to existing models. 
This section explains the systematic steps taken to design and implement the proposed 
algorithm, combining supervised deep learning and rule-based systems. 
Step 1: Data Preparation 
• Dataset: 
o Queries from Moodle logs categorized into 20 intent classes such as assignment 
submission, grade inquiry, and feedback request. 
o 10,000 queries, split into 80% training and 20% testing datasets. 
• Preprocessing: 
o Text cleaning: Remove special characters and stop words. 
o Tokenization: Split queries into meaningful tokens. 
o Word embeddings: Use pre-trained embeddings (e.g., GloVe, BERT) for semantic 
understanding. 
Step 2: Model Development 
• Deep Learning Layers: 
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o LSTM: Captures long-term dependencies and context from queries. 
o GRU: Processes sequences efficiently with reduced computational cost. 
• Rule-Based Layer: 
o Domain-specific keywords (e.g., “submit assignment,” “check grades”) are predefined 
to verify and refine deep learning predictions. 
• Ensemble Mechanism: 
o Combine LSTM and GRU outputs using a weighted voting mechanism. 
o Select the intent with the highest combined confidence score. 
Step 3: Implementation 
• Tools and Frameworks: 
o TensorFlow and Keras: For building and training deep learning models. 
o Python libraries like NLTK and spaCy: For preprocessing. 
o NVIDIA GPU: For optimized model training and faster inference. 
• Training: 
o Train LSTM and GRU models on labeled data using cross-entropy loss. 
o Fine-tune pre-trained embeddings for domain-specific queries. 
Step 4: Evaluation Metrics 
The hybrid model was evaluated using: 
• Accuracy: Proportion of correctly predicted intents. 
• Precision: Relevance of the predictions made. 
• Recall: Completeness of the predictions. 
• F1-Score: Balance between precision and recall. 
• Response Time: Time taken for the model to predict the intent. 
5.1 Validation Scenarios 
Scenario 1: Assignment Submission Query 
• Input: "What is the deadline to submit my assignment?" 
• Deep Learning Prediction: 
o LSTM predicts "assignment submission" with 90% confidence. 
o GRU predicts "assignment help" with 87% confidence. 
• Rule-Based Verification: 
o Matches keywords "submit" and "assignment" to refine the intent to "assignment 
submission." 
• Final Intent: "Assignment Submission." 
Scenario 2: Grade Inquiry Query 
• Input: "How can I check my grades?" 
• Deep Learning Prediction: 
o Both LSTM and GRU predict "grade inquiry" with confidence scores of 89% and 91%, 
respectively. 
• Rule-Based Verification: 
o Confirms "grade" and "check" in the query as relevant keywords. 
• Final Intent: "Grade Inquiry." 
 
After intent classification, response generation is handled through a hybrid strategy. For 
straightforward queries that match FAQ-type intents, a rule-based template selector is used. 
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For ambiguous or multi-turn queries, responses are dynamically generated using a sequence-
to-sequence model trained on past Moodle interaction data. This ensures the chatbot provides 
relevant, contextual, and efficient replies aligned with the detected intent. 
 
6. EXPERIMENTAL SETUP 
6.1 Dataset: A custom dataset was created using real-world queries collected from Moodle’s 
teaching-learning environment. The dataset consists of: 
• 1,000 Queries categorized into 20 intent classes (e.g., assignment submission, grade 
inquiry, feedback request). 
• Training/Testing Split: 80% training and 20% testing data. 
6.2 Performance Metrics 
The model was evaluated using the following metrics: 
• Accuracy: Measures the proportion of correctly predicted intents. 
• Precision and Recall: Evaluate the relevance and completeness of intent recognition. 
• Processing Time: Benchmarks computational efficiency. 
6.3 Benchmark Models 
The proposed hybrid model was compared against several baseline and deep learning models: 
• Baseline Models: Rule-based, Naïve Bayes, SVM. 
� Naïve Bayes was included as a classical baseline to contrast with modern deep learning 
methods. Its simplicity and interpretability provide a valuable point of comparison, particularly 
for illustrating the gains achieved by more complex hybrid architectures. 
• Deep Learning Models: LSTM, GRU, BERT. 
� This study additionally fine-tuned a BERT model on the same dataset. While BERT 
achieved comparable accuracy (91.7%), it required 3x more training time and higher 
computational resources, making our hybrid model a more efficient solution for Moodle 
deployments. 
 
7. RESULTS AND ANALYSIS 
7.1 Performance Comparison 
The hybrid model was tested against standalone models and showed significant improvements: 

Table 3. Performance Comparison of Intent Recognition Models 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Response 
Time (ms) 

Rule-Based 75.4 72.3 70.1 71.2 5 

Naïve Bayes 78.2 74.5 73.9 74.2 15 

LSTM 85.7 84.2 83.8 84.0 50 

GRU 87.1 85.4 84.9 85.1 45 

Proposed 
Hybrid 

92.5 91.8 91.2 91.5 40 
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As shown in Table 3, the proposed hybrid model significantly outperforms standalone models 
in accuracy, precision, recall, and F1-score, achieving 92.5% accuracy compared to LSTM 
(85.7%) and GRU (87.1%). The integration of rule-based verification enhances domain-
specific predictions, particularly for Moodle-related queries. Additionally, the hybrid model 
maintains an efficient response time of 40ms, leveraging GRU’s computational efficiency and 
ensemble mechanisms to support real-time interaction. 
7.2 Comparative Metrics for the Models 
 
7.2.1 Comparative Response Time Analysis 
The hybrid model achieves faster response times than standalone LSTM or GRU, with only a 
marginal increase over rule-based systems. This balance between accuracy and efficiency 
makes it ideal for real-time applications like chatbots. The Proposed Hybrid algorithm reduced 
response time to 40ms, a 20% improvement compared to standalone GRU (45ms) and a 20% 
improvement over LSTM (50ms), while achieving significantly higher accuracy (92.5%) than 
both. 
 
7.2.2 Quantifying Improvement Levels 
 
The percentage improvement was calculated using: 

 
Example Improvements: 

 
The hybrid model achieved a 20% reduction in response time compared to LSTM and an 11.1% 
reduction compared to GRU while maintaining superior performance metrics. 
7.2.3 Emphasizing Real-Time Capability 
Reducing response time while maintaining high accuracy enhances user experience in real-
time applications like chatbots. The hybrid model ensures chatbots efficiently handle queries, 
even during peak loads, providing speed and reliability in dynamic environments. The hybrid 
algorithm improves accuracy by 6.8% over LSTM, demonstrating its ability to balance 
computational efficiency and prediction performance for real-time educational chatbot 
systems. 
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Figure 1. Performance Metrics Comparison of Intent Recognition Models 

 
As illustrated in Figure 1, the bar charts for accuracy, precision, recall, and F1-score highlight 
the superior performance of the proposed hybrid model compared to standalone models. The 
hybrid model achieves the highest accuracy (92.5%) and F1- score (91.5%), demonstrating its 
effectiveness in balancing precision and recall. The integration of rule-based verification with 
deep learning improves domain-specific predictions while maintaining computational 
efficiency, making it well-suited for real- time interactions. 
 
7.2.4 Response Time Comparison 
Bar Chart Representation: Response time comparison among LSTM, GRU, and the Proposed 
Hybrid model, highlighting efficiency gains. 
 

 
Figure 2. Response Time Comparison of Intent Recognition Models 

As shown in Figure 2, the response time for LSTM, GRU, and the proposed hybrid model is 
compared using a bar chart, emphasizing the efficiency gains of the hybrid approach. While 
LSTM exhibits the highest response time at 50ms, GRU improves efficiency with 45ms. The 
proposed hybrid model further optimizes performance, reducing response time to 40ms by 
leveraging GRU’s computational efficiency and an ensemble mechanism, making it more 
suitable for real-time interactions. 
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7.2.5 Combined Comparison (Response Time & Accuracy) 
7.2.5.1 Visualization: A combined chart illustrating how the hybrid model achieves higher 
accuracy while reducing response time compared to LSTM and GRU. 

 
Figure 3. Combined Comparison of Response Time and Accuracy 
As illustrated in Figure 3, the hybrid model demonstrates a significant improvement by 
achieving the highest accuracy (92.5%) while maintaining a reduced response time (40ms) 
compared to LSTM (85.7% accuracy, 50ms response time) and GRU (87.1% accuracy, 45ms 
response time). This visualization highlights the hybrid model’s ability to balance accuracy and 
efficiency, making it an optimal choice for real-time intent recognition in AI-driven systems. 
 
7.3 Advantages of the Proposed Hybrid Algorithm 
• Accuracy Boost: Combines LSTM and GRU strengths, improving intent recognition 
accuracy. 
• Domain-Specific Relevance: Rule-based verification ensures high precision for 
Moodle-related intents. 
• Efficiency: Optimized GRU processing reduces computational overhead. 
• Robustness: Handles complex and ambiguous queries effectively through its hybrid 
architecture. 
 
7.4 How It Compares Standalone Models 
7.4.1 Rule-Based Systems: 
• Limited to predefined patterns and fails with unseen or ambiguous queries. 
• The hybrid model adapts by integrating LSTM and GRU for contextual understanding. 
7.4.2 Naïve Bayes: 
• Struggles with sequential context and long-term dependencies. 
• The hybrid model captures sequential and contextual information using deep learning 
layers. 
7.4.3 LSTM and GRU: 
• Standalone LSTM is computationally expensive; GRU is faster but less robust. 
• The hybrid model combines their strengths, achieving superior accuracy and efficiency. 
7.5 Insights 
• The hybrid model outperforms standalone models in both accuracy and efficiency. 
• Rule-based verification ensures domain-specific accuracy, reducing false positives 
• Processing time is optimized due to GRU’s computational efficiency. 
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8 STATISTICAL VALIDATION 
8.1 Hypothesis Testing 
1. Null Hypothesis (H₀): There is no significant difference between the performance of 
the hybrid model and the standalone models (LSTM, GRU). 
2. Alternative Hypothesis (H₁): The hybrid model significantly outperforms standalone 
models in accuracy, precision, recall, and response time. 
8.2 Methodology 
• Paired t-test: 
o Used to compare the performance metrics (accuracy, precision, recall, response time) 
of the hybrid model against LSTM and GRU. 
o Determines the significance of performance improvements. 
• Result 

Table 4. Paired T-Test Results 
Metric Model A 

(LSTM) 
Model B 
(GRU) 

Hybrid 
Model 

p- value Significance 

Accuracy (%) 85.7 87.1 92.5 <0.01 Significant 

Precision (%) 84.2 85.4 91.8 <0.01 Significant 

Recall (%) 83.8 84.9 91.2 <0.01 Significant 

Response Time 
(ms) 

50 45 40 <0.05 Significant 

As shown in table 4, the paired t-test confirms the hybrid model's significant improvement over 
LSTM and GRU, with p-values below 0.01 for accuracy, precision, and recall, and below 0.05 
for response time. 
8.3 ANOVA Test 
• Used to compare the mean accuracy values of the hybrid, LSTM, and GRU models 
across multiple trials. 
• Significance Level (α): 0.05 (95% confidence interval). 
Result 

Table 5. ANOVA Test Results 
Metric F-Statistic p-value Significance 

Accuracy 125.32 <0.001 Significant 

As shown in table 5, the ANOVA test indicates a significant difference in accuracy across 
models, with an F-statistic of 125.32 and a p-value below 0.001, validating the hybrid model’s 
superiority. 
 
8.4 Interpretation 
1. Significant Differences Confirmed: 
o p-values from t-tests and ANOVA confirm statistically significant performance 
improvements by the hybrid model. 
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2. Hybrid Model Superiority: 
o The Hybrid model achieved the highest mean accuracy (92.5%), 
surpassing LSTM (85.7%) and GRU (87.1%) with lower variability. 
3. Efficiency: 
o The Hybrid model reduced response time to 40ms, significantly faster than LSTM 
(50ms) and GRU (45ms), confirming its computational efficiency. 
 
The results confirm that the hybrid model significantly outperforms standalone models in all 
critical metrics, validating its superiority for real-time intent recognition in Moodle chatbots. 
The proposed hybrid intent recognition algorithm effectively combines the strengths of deep 
learning and rule-based systems to overcome the limitations of standalone models. The 
inclusion of LSTM and GRU ensures a comprehensive understanding of both long-term and 
short-term dependencies in user queries, while the rule-based layer enhances domain-specific 
accuracy. Experimental results demonstrate significant improvements in accuracy, precision, 
recall, and response time, validating the hybrid model's effectiveness in real-world educational 
scenarios. 
Furthermore, the integration of the hybrid model into Moodle fosters enhanced interaction 
between students and the system, promoting personalized learning experiences. The study 
highlights how hybrid models can address challenges such as ambiguous queries, rare intent 
handling, and computational inefficiency in traditional approaches. 
The results confirm that the hybrid model significantly outperforms standalone models in all 
critical metrics, validating its superiority for real-time intent recognition in Moodle chatbots. 
 
9 CONTRIBUTION 
9.1 Key Contributions 
• Improved Accuracy: Achieved a 5-10% accuracy boost over existing models. 
• Context Handling: Enhanced the chatbot’s ability to understand complex queries. 
• Domain-Specific Precision: Leveraged rule-based verification for Moodle- specific 
intents. 
• Efficiency: Optimized processing time, enabling real-time responses. 
9.2 Implications for Moodle 
The enhanced algorithm enables personalized learning by accurately identifying student needs 
and providing tailored recommendations. This improvement can transform Moodle’s teaching-
learning evaluation process, fostering greater student engagement and satisfaction. 
10 CONCLUSION AND FUTURE WORK 
10.1 Conclusion 
This paper introduced a hybrid intent recognition algorithm combining deep learning and rule-
based approaches, tailored for Moodle. Experimental results demonstrated significant 
improvements in accuracy, efficiency, and personalization. The algorithm effectively addresses 
the limitations of traditional NLU methods, making it a robust solution for real-world 
educational applications. The integration of the hybrid model into Moodle enables personalized 
learning by accurately identifying student needs and providing tailored recommendations. 
These advancements establish a strong foundation for future research in intelligent educational 
chatbots. Intent detection directly drives personalized learning pathways by recommending 
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topic-specific materials and reminders based on classified intent. This makes Moodle more 
responsive to individual student needs. 
10.2 Future Work 
Building on the success of the hybrid model, future work will focus on enhancing context 
management using reinforcement learning (RL). By integrating RL techniques, the chatbot can 
dynamically adapt to user behavior and preferences over time, further improving intent 
recognition and user engagement. Specific areas of exploration include: Dynamic Context 
Management: Employ RL to enable the chatbot to retain and utilize context across multi-turn 
conversations, enhancing its ability to respond accurately to complex queries. Expanding the 
dataset to include more diverse queries. Personalization: Use RL to learn individual user 
preferences, tailoring responses and recommendations to meet specific needs. Multilingual 
Support: Extend the hybrid model to support multiple languages, addressing the diverse needs 
of global educational platforms. Sentiment Analysis: Incorporate sentiment analysis to refine 
intent recognition and provide empathetic responses, fostering better user experiences. 
These enhancements will ensure that the chatbot continues to evolve, addressing emerging 
challenges and opportunities in the field of educational technology. This contribution serves as 
a foundation for developing intelligent, context-aware chatbots that can revolutionize the 
educational experience within LMS platforms like Moodle. 
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