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Abstract: 
This paper introduces a novel deep reinforcement learning (DRL) framework Intelligent 
Reconfigurable Integrated Security (IRIS) designed to enhance the secrecy and efficiency of 
communication in Reconfigurable Intelligent Surface (RIS) assisted Unmanned Aerial Vehicle 
(UAV) networks. IRIS jointly optimizes UAV flight trajectories, RIS phase configurations, and 
power allocation strategies to strengthen physical-layer security in environments susceptible to 
eavesdropping and signal interference. Unlike traditional (DRL) methods such as Proximal 
Policy Optimization (PPO), which often struggle with high-dimensional optimization tasks in 
dynamic wireless systems, IRIS employs an adaptive exploration-exploitation mechanism 
tailored for secure UAV operations. The framework dynamically responds to environmental 
changes, maximizing the secrecy rate while minimizing energy consumption and latency. 
Simulation results, conducted using MATLAB, demonstrate that IRIS significantly 
outperforms conventional approaches across multiple performance indicators, including 
secrecy rate, convergence speed, and energy efficiency. A comprehensive sensitivity analysis 
of key hyperparameters further validates the model's robustness across various deployment 
scenarios. The results highlight IRIS as a promising algorithm for secure communication in 
UAV-enabled applications such as disaster relief, critical infrastructure monitoring, and next-
generation IoT deployments. 
Index terms: Intelligent Reconfigurable Integrated Security (IRIS), Reconfigurable Intelligent 
Surface (RIS), Unmanned Aerial Vehicle (UAV), Deep Reinforcement Learning (DRL). 
INTRODUCTION: 
The integration of Unmanned Aerial Vehicle (UAV) communications with Reconfigurable 
Intelligent Surface (RIS) technology has opened new frontiers in wireless communication, 
offering enhanced coverage, improved spectral efficiency, and dynamic reconfigurability. This 
convergence is particularly promising for next-generation communication networks, where 
flexibility and adaptability are critical. However, it also introduces new security vulnerabilities, 
especially in applications where UAVs operate in open-air environments and RIS units 
manipulate electromagnetic signals. These features inherently expose the network to 
eavesdropping, signal jamming, and other forms of malicious interference, necessitating 
security strategies that extend beyond traditional cryptographic methods [1, 2]. 
To mitigate these risks, recent studies have turned to physical layer security (PLS) techniques, 
which offer a promising alternative for safeguarding wireless transmissions without the 
computational burden associated with higher-layer encryption. When effectively applied to 
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RIS-assisted UAV networks, PLS methods can significantly enhance confidentiality by 
leveraging the dynamic propagation characteristics of the wireless channel itself [3]. Despite 
this potential, implementing secure communications in such environments presents complex 
challenges. Chief among them are the mobility of UAVs, the high-dimensional space of RIS 
phase shift configurations, and the demand for energy-efficient operation without 
compromising communication integrity [4]. 
Standard optimization techniques and even contemporary deep reinforcement learning (DRL) 
models struggle to manage these interconnected variables effectively. Algorithms such as 
Proximal Policy Optimization (PPO) and Twin Delayed Deep Deterministic Policy Gradient 
(TD3) have shown encouraging results in resource management and control tasks in wireless 
systems. However, when applied to UAV-RIS scenarios where trajectory optimization, phase 
configuration, and real-time security adaptation must be co-optimizing these methods often fall 
short. They suffer from slow convergence and limited ability to consistently maintain high 
secrecy rates in environments with rapidly changing channel conditions [5]. 
To address these limitations, we propose IRIS (Intelligent Reconfigurable Integrated Security) 
a novel deep reinforcement learning framework tailored specifically for enhancing physical 
layer security in UAV-RIS communication networks. The IRIS framework introduces the 
following key innovations: 

1. Adaptive exploration-exploitation mechanisms that intelligently balance the trade-off 
between security maximization and system performance. 

2. Joint optimization of UAV trajectories and RIS phase shift configurations, enabling the 
formation of robust and secure communication pathways in real time. 

3. Context-aware power allocation strategies that dynamically allocate transmit power to 
minimize energy consumption while sustaining high secrecy rates. 

4. Advanced feature extraction methods that capture non-linear interactions between 
UAV mobility, RIS behaviour, and channel threats for more informed decision-making 
[6]. 

Through extensive simulations in dynamic network scenarios, IRIS demonstrates substantial 
performance gains over existing methods. Specifically, it achieves a 29.8% improvement in 
average secrecy rate and a 26.7% acceleration in convergence time compared to baseline DRL 
approaches [7]. These improvements are maintained even under challenging conditions 
involving multiple eavesdroppers, fluctuating signal interference, and varying mobility 
patterns, reinforcing IRIS's suitability for mission-critical and security-sensitive applications, 
including disaster response, military communications, and industrial IoT deployments. 
Related works: 
a. UAV-assisted Wireless Communications 
Unmanned Aerial Vehicles (UAVs) have emerged as dynamic assets in wireless networks, 
offering flexible coverage and rapid deployment. Early research established their role as aerial 
relays and base stations [8], while recent studies explored swarm coordination using distributed 
learning [9]. Energy-efficient trajectory planning [10] and cognitive radio integration [11] 
further enhance UAV adaptability, making them key enablers of resilient, on-demand, and 
intelligent next-generation communication systems. 
b. Reconfigurable Intelligent Surfaces 



International Journal of Innovation Studies 9 (2) (2025) 

 

 895 

Reconfigurable Intelligent Surface (RIS) technology has become a key innovation in shaping 
smart radio environments. Foundational work established RIS to control wireless propagation 
through passive beamforming [12]. Later advancements introduced efficient phase 
optimization techniques [13,14], enabling precise signal steering. Recent studies have further 
shown that RIS significantly improves energy efficiency and spectral utilization, making it 
essential for future low-power, high-performance wireless communication systems [15]. 

 
Fig 1: RIS based UAV communication in IoT devices 

c. Deep Reinforcement Learning in Wireless Networks 
Deep Reinforcement Learning (DRL) has emerged as a powerful tool for optimizing wireless 
networks. A comprehensive review highlighted its diverse applications across communication 
layers [16]. Notably, Proximal Policy Optimization (PPO) has shown stable performance in 
resource allocation tasks [17,18], while Twin Delayed Deep Deterministic Policy Gradient 
(TD3) excels in continuous control scenarios, with further improvements achieved through 
hybrid learning architectures tailored for wireless systems [19,20]. 
d. Physical Layer Security 
Physical layer security has become a vital strategy for safeguarding wireless communication. 
Early work focused on optimizing secrecy rates under varying channel conditions [21], while 
subsequent studies introduced artificial noise techniques to disrupt eavesdroppers [22]. 
Advanced protocols tailored for next-generation networks have also been developed [23], and 
recent efforts have emphasized trajectory-based optimization to enhance the security of UAV-
enabled systems in dynamic environments [24]. 
e. Integration of UAV and RIS Technologies 
The fusion of UAV and RIS technologies is gaining momentum as a next-generation wireless 
communication strategy, enabling remarkable flexibility in how signals are delivered and 
directed. This integration provides significant advantages in spatial coverage and 
electromagnetic control. At the same time, it introduces a new set of engineering challenges, 
including real-time coordination, adaptive optimization, and maintaining link reliability in 
dynamic conditions paving the way for intelligent, reconfigurable network architectures. 
Channel Modelling and Characterization 
Recent advancements have introduced detailed channel models tailored for UAV-RIS 
communication systems. Foundational work by [25] focused on cascaded channel 
characterization, highlighting the importance of accounting for the unique three-dimensional 
structure of UAV to RIS links. Their analysis revealed that conventional models often fall short 
especially in urban environments where signal paths are highly dynamic and elevation-
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dependent, necessitating more accurate modelling to reflect real-world conditions and improve 
communication reliability The cascaded channel can be expressed as 

h_cascade	 = 	G_RIS − GND	 ∗ 	Φ	 ∗ 	G_UAV − RIS     (1)                                          
where G_RIS-GND represents the RIS-to-ground channel matrix, Φ denotes the RIS phase-
shift matrix, and G_UAV-RIS captures the UAV-to-RIS channel characteristics. 
Joint Optimization Frameworks 
a. Trajectory and Phase Shift Optimization 
Jointly optimizing UAV trajectories and RIS phase shifts poses a significant challenge in 
dynamic wireless environments. A comprehensive framework by [26] addressed this through 
real-time phase tuning aligned with UAV mobility, communication-aware path planning, and 
integrated power and RIS configuration strategies. Their approach achieved a 35–40% increase 
in throughput over conventional methods, especially in multi-user ground scenarios, 
demonstrating the potential of coordinated aerial and surface reconfiguration for enhanced 
performance. 
b. Energy Efficiency Considerations 
Notable advances in energy-efficient UAV-RIS communication were introduced by [28], 
focusing on adaptive resource use. Their framework included dynamic power control based on 
channel variations, selective RIS element activation to reduce unnecessary energy usage, and 
flight path optimization that balanced propulsion and communication demands. This holistic 
approach led to a 25% reduction in total energy consumption while consistently meeting 
quality-of-service requirements, showcasing the effectiveness of intelligent, energy-aware 
system design. 
Security Enhancements 
A detailed study on physical layer security in UAV-RIS networks by [27] introduced key 
innovations. These included null-space-based secure beamforming, artificial noise injection, 
and RIS phase optimization for enhanced confidentiality. Additionally, anti-jamming strategies 
like adaptive UAV routing, cooperative RIS jamming, and interference-aware power control 
were proposed. Collectively, these techniques improved secrecy rates by up to 45% compared 
to traditional methods, underscoring their potential for secure wireless communication systems. 
Implementation Challenges 
Recent studies have highlighted several key implementation challenges that must be addressed 
for practical deployment of UAV-RIS communication systems: 

1. Channel Estimation 
o The high mobility of UAVs demands frequent and accurate channel 

estimation. 
o The cascaded nature of UAV–RIS–ground links increases the complexity of 

modelling and estimation. 
o Limited feedback bandwidth and latency constraints make real-time updates 

difficult in field conditions. 
2. Hardware Constraints 

o Real-world RIS hardware often supports only discrete phase shift levels, 
limiting beamforming precision. 
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o UAV payload limitations restrict the size and weight of communication 
modules and onboard processing units. 

o Managing power consumption is critical for both UAV endurance and 
continuous RIS operation. 

3. Coordination Overhead 
o RIS phase adjustments must occur in near real-time to respond to dynamic 

UAV positions and channel conditions. 
o Centralized control systems can introduce significant communication 

overhead. 
o Maintaining synchronization between moving UAVs, static RIS elements, and 

ground nodes is operationally challenging. 
Performance Analysis 
Comprehensive evaluations of UAV-RIS systems have uncovered several important 
performance insights: 

1. Coverage Enhancement 
o Strategic positioning of UAVs and RIS elements can expand network coverage 

by up to 40%. 
o Users located at the network’s edge experience noticeable gains in signal 

quality. 
o The system maintains strong performance even in non-line-of-sight (NLoS) 

environments, increasing overall reliability. 
2. Capacity Scaling 

o System capacity scales linearly with the number of RIS elements under ideal 
conditions. 

o However, the benefit diminishes beyond certain UAV altitude levels, requiring 
altitude optimization. 

o A balance must be maintained between maximizing coverage and achieving 
optimal capacity. 

3. Latency Reduction 
o Optimized placement of UAVs and RIS can reduce end-to-end latency by 30–

50%. 
o High-mobility conditions are better supported with adaptive system 

configurations. 
o These improvements directly benefit delay-sensitive services such as real-time 

monitoring and control. 
f. Research Gaps and Our Contributions 
Despite notable advancements in UAV-RIS research, several important gaps persist in current 
literature: 

1. Limited focus on joint optimization of UAV trajectories and RIS configurations 
specifically for enhancing security. 

2. Inadequate exploration of reinforcement learning techniques tailored for secure UAV-
RIS communications. 

3. Absence of unified frameworks that address multiple security objectives 
simultaneously. 
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4. Lack of efficient algorithms suitable for deployment in environments with constrained 
computational and energy resources. 

This study addresses these challenges through the following key contributions: 
1. The design of IRIS, a dedicated reinforcement learning framework for optimizing 

security in UAV-RIS systems. 
2. Extensive benchmarking against leading algorithms such as PPO, validating 

performance through detailed simulations. 
3. Incorporation of multi-objective security criteria into a single, integrated learning 

model. 
4. Careful attention to real-world constraints, including system limitations, mobility 

dynamics, and deployment feasibility. 
CONTRIBUTIONS AND ORGANISATIONS 
In this paper, we investigate the optimization of a RIS-enabled UAV communication network 
with multiple UAVs and IoT devices, focusing on physical layer security enhancement through 
intelligent trajectory planning and RIS phase shift configuration. We consider a challenging 
scenario where multiple UAVs serve as aerial base stations operating in mmWave frequencies, 
while an RIS with multiple elements assists in forming reconfigurable wireless links to combat 
potential eavesdropping attempts. The joint optimization of UAV trajectories, beamforming 
vectors, and RIS phase shifts is pursued through a novel hybrid deep reinforcement learning 
approach. 
Main Contributions 
In this paper, we explore how to improve security in a communication network that uses UAVs 
and Reconfigurable Intelligent Surfaces (RIS) to connect multiple IoT devices. Our focus is on 
physical layer security, using smart UAV flight paths and RIS configurations. We introduce a 
deep reinforcement learning-based solution called IRIS, designed specifically to handle the 
complex challenges of this kind of system. The contributions are: 
IRIS Framework: 
We present a new algorithm, IRIS, that helps UAVs plan their movement in 3D space while 
also adjusting the RIS phase shifts and beamforming settings. It solves a difficult problem 
involving many interacting parts and ensures secure data transmission at mmWave frequencies. 
Realistic Channel Model: 
 
We build a detailed model for how signals travel in this system. It includes real-world details 
like different path loss in line-of-sight (LoS) and non-line-of-sight (NLoS) situations, how RIS 
elements are spaced, and uses practical settings like a 28 GHz frequency and 200 MHz 
bandwidth. 
Smart Learning Setup: 
 
We design how the AI agent "sees" the environment, including UAV positions, their speeds, 
and RIS settings. The learning actions include both moving the UAVs and adjusting RIS 
settings, while aiming to improve a security-focused reward (called secrecy rate). 
Efficient Training Process: 
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We train our model using a large memory buffer (2 million past experiences) and batches of 
512 samples. We use deep neural networks with three layers of 1024, 512, and 256 neurons, 
which help the model learn faster and perform better than traditional methods. 
Strong Experimental Results: 
 
We compare IRIS with standard algorithms like PPO. Our results show better secrecy rates, 
faster learning, and more stable performance. We also test how sensitive IRIS is to different 
settings and show it works well even under tough conditions. 
SYSTEM MODEL 
We focus on a secure communication setup that brings together multiple UAVs, IoT devices, 
and a Reconfigurable Intelligent Surface (RIS). The goal of this system is to improve physical 
layer security by smartly adjusting the positions of UAVs and configuring the RIS phase shifts 
to create safer communication channels. 

 
Fig. 2: IRIS Framework Architecture 

a. Network Architecture 
The system includes several key components: 

• A group of M UAVs, labelled as 𝒰 = {1, 2, ..., M} 
• N IoT devices, denoted by 𝒩 = {1, 2, ..., N} 
• A Reconfigurable Intelligent Surface (RIS) with K reflecting elements, represented as 

ℛ = {1, 2, ..., K} 
• A set of legitimate receivers and potential eavesdroppers within the communication 

range. 
Each UAV functions as an aerial relay and operates in a three-dimensional space. Its position 
is defined by the coordinates (xₘ, yₘ, zₘ) ∈ ℝ³, where m refers to the m-th UAV in 𝒰. The RIS 
is placed at a fixed ground location and consists of K passive elements. Each element can apply 
a programmable phase shift θₖ in the range [0, 2π], where k refers to the k-th element in ℛ. 
This configuration helps in intelligently reflecting signals to enhance secure communication 
paths. 
1) UAV Mobility Model 
For mobile scenarios, UAV positions evolve according to 
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𝑝_𝑚(𝑡 + 1) = 𝑥_	𝑚(𝑡) + 𝑦	𝑚(𝑡)∆𝑡 + 1/2	𝑎_𝑚(𝑡), ∆𝑡𝑥!     (2) 
where: p_m(t) = [x_m(t), y_m(t), z_m(t)]ᵀ is the position vector, v_m(t) is the velocity vector, 
a_m(t) is the acceleration vector, Δt is the time step interval 
2) RIS Configuration 
The RIS phase shift matrix Φ(t) evolves dynamically: 
𝛷(𝑡) 	= 	𝑑𝑖𝑎𝑔(𝑒^{𝑗𝜃₁(𝑡)}, . . . , 𝑒^{𝑗𝜃ₖ(𝑡)})       (3) 
with constraints: θₖ(t) ∈ [0, 2π] and |e^{jθₖ(t)}| = 1 

 
Fig 3: UAV-RIS Network System Model 

b. Channel Model 
1) Direct Channel 
The channel between IoT device n and UAV m is modeled as: 
ℎ_{𝑛,𝑚} 	= 	√𝛽₀𝑑_{𝑛,𝑚}^{−𝛼}	𝑔_{𝑛,𝑚}       (4) 
where: β₀ represents the path loss at reference distance, d_{n, m} is the Euclidean distance, α 
denotes the path loss exponent, g_{n, m} represents small-scale fading following 𝒞𝒩(0,1) 
The path loss model incorporates both LoS and NLoS components: 
𝑃𝐿(𝑑) = 20	𝑙𝑜𝑔 10(4𝜋𝑓_𝑐/𝑐) 	+ 	10𝛼 𝑙𝑜𝑔10(𝑑)𝜂_𝜎     (5) 
where: f_c is the carrier frequency, c is the speed of light, η_σ represents shadow fading with 
variance σ² 
2) RIS-Assisted Channel 
The cascaded channel through the RIS is given by: 
𝐻_{𝑅𝐼𝑆} = 𝐺_𝑟	𝜙	𝐺_𝑡          (6) 
where: G_r ∈ ℂᴷˣᴹ is the channel matrix from RIS to UAVs, G_t ∈ ℂᴷˣᴺ is the channel 
matrix from IoT devices to RIS., Φ = diag(e^{jθ₁}, ..., e^{jθₖ}) is the RIS phase shift matrix 
The individual elements of G_r and G_t follow: 
[𝐺_𝑟]{𝑘,𝑚} 	= 	√𝛽₀𝑑{𝑘,𝑚}^{−𝛼_𝑟}	𝑔_{𝑘,𝑚}^𝑟	[𝐺_𝑡]{𝑘, 𝑛} 	=
	√𝛽₀𝑑{𝑘, 𝑛}^{−𝛼_𝑡}	𝑔_{𝑘, 𝑛}^𝑡     (7)
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Fig 4: Channel Model of RIS configuration 

C. Signal Model 
1) Transmitted Signal 
The transmitted signal from IoT device n is: 
  𝑥_𝑛(𝑡) = √𝑃_𝑛(𝑡)𝑠_𝑛(𝑡)         (8) 
where: P_n(t) is the adaptive transmit power, s_n(t) is the normalized information signal 
2) Received Signal 
The received signal at UAV m can be expressed as: 
𝑦"(𝑡) = ∑ 𝑁(ℎ_{𝑛_𝑚(𝑡) + 𝐻_{𝑅𝐼𝑆	𝑛_𝑚}(𝑡)√#$% 	𝑃_𝑛(𝑡)𝑥_𝑛(𝑡) +w_m(t)   (9) 
where: w_m(t) ~ 𝒞𝒩(0, σ²) represents AWGN, H_{RIS,n,m}(t) denotes the cascaded 
channel through the RIS 
3) SINR Model 
The instantaneous SINR at UAV m for IoT device n is: 
𝛾_{𝑛_𝑚}(𝑡) = ℎ_{𝑛_𝑚}(𝑡) + 𝐻_{𝑅𝐼𝑆	𝑛_𝑚}(𝑡)|!|𝑃#(')/(∑ᵢ₌₁, ᵢ ≠ ₙᴺ	|ℎ_{𝑖,𝑚}(𝑡) 	+
	𝐻_{𝑅𝐼𝑆, 𝑖, 𝑚}(𝑡)|²𝑃_𝑖(𝑡) 	+ 	𝜎²)       (10) 
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Fig 5: Signal Model 

D. Secrecy Rate Formulation 
1) Legitimate Channel Capacity 
The achievable rate at the legitimate receiver is: 
𝑅%(𝑡) = 𝑙𝑜𝑔!(1 + 𝛾%(𝑡))        (11) 
where γ_l(t) is the received SINR at the legitimate receiver.  
2) Eavesdropper Channel Capacity 
The eavesdropper's achievable rate is: 
R e(𝑡) = 𝑙𝑜𝑔!(1 + 𝛾𝑒(𝑡))        (12) 
where γ_e(t) is the received SINR at the eavesdropper. 
3) Secrecy Rate 
The instantaneous secrecy rate is defined as: 
   𝑅	*(𝑡) = [𝑅%(𝑡) − 𝑅+(𝑡)],        (13) 
E. Optimization Problem 
The security optimization problem can be formulated as: 
𝑚𝑎𝑥_{𝑈(𝑡), 𝛷(𝑡), 𝑃(𝑡)}	∫ ₀ᵀ	[𝑙𝑜𝑔₂(1	 + 	𝛾_1(𝑡)) 	− 	𝑙𝑜𝑔₂(1	 + 	𝛾_𝑒(𝑡))]⁺	𝑑𝑡 (14) 
subject to: ∑ₖ₌₁ᴷ |φₖ(t)| = 1, ∀k ∈ ℛ, t ∈ [0,T], 0 ≤ P_n(t) ≤ P_max, ∀n ∈ 𝒩, t ∈ [0,T], 
(x_m(t), y_m(t), z_m(t)) ∈ 𝒜, ∀m ∈ 𝒰, t ∈ [0,T], |v_m(t)| ≤ v_max, ∀m ∈ 𝒰, t ∈ [0,T], 
|a_m(t)| ≤ a_max, ∀m ∈ 𝒰, t ∈ [0,T] 
where:  
U(t) represents time-varying UAV position,  
Φ(t) denotes time-varying RIS phase shifts,  
P(t) indicates time-varying transmit powers,  
𝒜 defines the feasible flight region for UAVs,  
v_max and a_max are the maximum allowed velocity and acceleration 
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Fig 6: Secrecy Rate Formulation and Optimization framework 

To tackle this optimization challenge, we introduce the IRIS algorithm, which effectively 
manages secure communication in both fixed and dynamic environments. It simultaneously 
adjusts UAV flight paths, RIS phase settings, and transmission power, all while accounting for 
practical limitations and real-time changes in network conditions. 
IRIS BASED SOLUTION FOR MAXIMUM SECRECY RATE OPTIMIZATION: 
IRIS (Intelligent Reconfigurable Intelligent Security) is a new framework developed to 
strengthen the security of UAV-RIS networks. It combines deep reinforcement learning with 
physical layer security methods to dynamically control UAV positions, RIS phase settings, and 
power usage. This intelligent system continuously adapts to changing network conditions, 
aiming to improve security while maintaining energy efficiency and communication quality. 
Problem Formulation for Maximum Secrecy Rate 
The secrecy rate Rs(t) in UAV-RIS networks relies on fine-tuning several connected factors. 
These include planning the UAVs’ flight paths to limit the chances of eavesdropping, adjusting 
the RIS phase shifts to strengthen signals for intended users while reducing unintended signal 
leaks, and managing transmit power levels to lower interception risks without compromising 
communication reliability. 
The optimization problem can be formulated as: 

𝑚𝑎𝑥
-('),/('),0(')

∫ 𝑅𝑠(𝑡)𝑑𝑡1
2         (15) 
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Fig 7: UAV-RIS Secrecy rate optimization framework 

Phase Shift Constraints: 
∑ ∣ 𝜙𝑘(𝑡) ∣= 1, ∀𝑘 ∈ 𝑅, 𝑡 ∈ [0, 𝑇]3
3$%       (16) 

where ϕk(t)represents the phase shift of the kth RIS element. 
Reconfigurable Intelligent Surfaces (RIS) are made up of many reflective elements that can 
change the phase of incoming signals. This allows them to boost signal strength, reduce 
interference, and improve communication security. However, these elements can only adjust 
the signal’s direction or phase they cannot increase its power. 

• Each RIS element k applies a specific phase shift ϕₖ(t) to the signal it reflects, altering 
the direction of wave propagation. 

• Because RIS is a passive device, it doesn't boost the signal's power it only adjusts its 
phase. This is why the unit-modulus condition is used, ensuring each reflection has a 
magnitude of 1.  

• The combined phase shifts must be controlled precisely to steer the signal 
constructively toward the legitimate receiver and destructively toward any potential 
eavesdropper. 

• This condition ensures that all phase shifts are selected strategically, allowing the RIS 
to form a focused beam that strengthens the intended communication link while 
minimizing signal leakage elsewhere. 

Physical Interpretation 
• Signal Enhancement: Through precise control of phase shifts, the RIS can strengthen 

signal transmission at targeted positions, such as the location of the legitimate receiver. 
• Eavesdropper Suppression: By fine-tuning the phase adjustments, the RIS is capable of 

minimizing signal reflections toward unintended listeners, making it harder for them to 
intercept or decode the data. 
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• Security Improvement: These constraints help the RIS to direct signals effectively 
toward trusted users while weakening or eliminating signal paths in the direction of 
possible eavesdroppers, thereby enhancing overall communication security. 

Optimization Impact 
The RIS phase shifts are optimized to enhance the secrecy rate by ensuring: 

1. Constructive interference at the legitimate receiver, which strengthens the desired 
signal. 

2. Destructive interference at the eavesdropper’s location, effectively weakening any 
intercepted signal. 

3. Minimal signal leakage toward unintended directions by continuously adapting the 
phase shifts based on the UAV's location, user distribution, and the surrounding channel 
conditions through an iterative optimization process. 

Transmit Power Constraints: 
0 ≤ 𝑃𝑛(𝑡) ≤ 𝑃𝑚𝑎𝑥, ∀𝑛 ∈ 𝑁, 𝑡 ∈ [0, 𝑇]      (17) 
where Pn(t) represents the transmission power of the UAV or an IoT device at time t, and         
Pmax is the maximum allowable transmit power. 
The transmit power constraint ensures that UAVs and IoT devices operate within safe and 
efficient power levels to support security and reliability: 

• Lower Limit: The condition Pn(t)≥0 guarantees that transmit power is always non-
negative. 

• Upper Limit: The cap Pn(t)≤Pmax  avoids excessive energy use, helping to reduce 
interference, conserve battery life, and limit signal strength received by eavesdroppers. 

• Security Factor: If power levels are too high, it can unintentionally boost the 
eavesdropper’s ability to intercept signals. Hence, optimized power control is essential 
to protect data without compromising efficiency. 

Physical Interpretation 
• Energy Efficiency: Since IoT devices typically rely on limited battery power, keeping 

energy use low helps extend their operational time. 
• Reduced Interference: By capping transmission power, the system avoids unnecessary 

signal overlap with nearby devices, ensuring cleaner communication. 
• Improved Security: Adjusting power levels dynamically allows just enough signal 

strength for reliable communication without boosting signal levels in a way that 
benefits eavesdroppers. 

Optimization Impact 
The optimization framework adjusts transmit power intelligently based on real-time network 
conditions: 

1. Boosting Power when the authorized receiver has a strong connection and the 
eavesdropper’s signal is weak maximizing secure data delivery. 

2. Reducing Power when the eavesdropper has a better chance of intercepting the signal 
minimizing potential data leakage. 

3. Balancing Power Use to ensure communication remains secure and efficient, without 
unnecessary energy consumption. 

UAV Mobility Constraints: 
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�𝑥𝑚(𝑡), 𝑦𝑚(𝑡), 𝑧𝑚(𝑡)� ∈ 𝐴, ∀𝑚 ∈ 𝑈, 𝑡 ∈ [0, 𝑇]     (18) 
where (x m(t), y m(t), z m(t)) represents the UAV’s position in a 3D space at time t and A is 
the predefined flight zone. 
UAVs serve as aerial base stations in RIS-assisted networks, allowing dynamic placement to 
strengthen secure communication. Mobility constraints are crucial for safe and strategic 
operation: 

• Defined Flight Zone: Each UAV must stay within a predetermined safe airspace, 
ensuring it operates within authorized boundaries. 

• Geographical Compliance: UAVs must avoid restricted zones, adhere to aviation 
regulations, and follow mission-specific location limits. 

• Security Optimization: UAV positions are carefully chosen to strengthen signals for 
legitimate receivers while minimizing the possibility of eavesdropping. 

Physical Interpretation 
• Coverage Optimization: Strategic positioning of UAVs enhances signal delivery to 

legitimate users, improving both communication quality and secrecy. 
• Obstacle Avoidance: UAVs must navigate around physical barriers, restricted airspace, 

and environmental hazards to maintain stable operation. 
• Security Optimization: By adjusting their positions, UAVs can limit the signal exposure 

to potential eavesdroppers, reducing the risk of interception. 
Optimization Impact 

1. Navigating to strong-signal zones: The UAVs adjust their path to remain close to 
legitimate users, where signal strength is highest. 

2. Evading eavesdropper visibility: They avoid flight paths that give potential 
eavesdroppers a direct line-of-sight to the communication link. 

3. Maintaining safe airspace limits: UAVs operate within designated boundaries, 
balancing safety regulations with the goal of maximizing the secrecy rate. 

Velocity and Acceleration Limits: 
∣ 𝑣𝑚(𝑡) ∣≤ 𝑣𝑚𝑎𝑥, ∣ 𝑎𝑚(𝑡) ∣≤ 𝑎𝑚𝑎𝑥, ∀𝑚 ∈ 𝑈, 𝑡 ∈ [0, 𝑇]    (19) 
where vm(t) and am(t) denote the UAV’s velocity and acceleration, respectively, with limits 
vmax and amax. 

• Speed Regulation: The velocity limit keeps UAVs from flying too fast, helping 
maintain consistent and reliable coverage across the network. 

• Smooth Navigation: The acceleration cap ensures UAVs avoid sudden, jerky 
movements, promoting flight stability and reducing energy usage. 

Physical Interpretation 
• Steady Operation: Maintaining moderate speeds allows UAVs to remain stable in flight 

and reduces disruptions in communication signals. 
• Energy Conservation: Controlled acceleration helps prevent unnecessary battery drain, 

supporting longer missions. 
• Consistent Security: Smooth navigation ensures the secrecy rate remains stable, 

lowering the chance of signal interception. 
Optimization Impact 
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The UAV’s path is optimized to achieve the following: 
1. Ensure stable communication by maintaining consistent coverage for authorized users 

through smooth movement. 
2. Minimize interception risks by adjusting its route to weaken the signal path toward 

potential eavesdroppers. 
3. Enhance energy efficiency by avoiding unnecessary changes in speed or direction. 

The overall goal is to maximize the secrecy rate Rs(t) by intelligently coordinating UAV 
positioning, RIS phase adjustments, and transmit power levels in real time. 
IRIS ALGORITHM CORE CONCEPT AND WORKFLOW: 
The Intelligent Reconfigurable Integrated Security (IRIS) algorithm is a novel deep 
reinforcement learning-based framework developed to boost the secrecy rate in UAV networks 
assisted by Reconfigurable Intelligent Surfaces (RIS). Setting itself apart from traditional 
methods, IRIS continuously learns and adapts in real-time repositioning UAVs, fine-tuning 
RIS phase shifts, and managing transmit power to maintain a communication network that is 
not only secure but also energy efficient. 
Learning-Based Security Optimization 
IRIS uses reinforcement learning (RL) to continuously learn and refine strategies that improve 
the security and efficiency of UAV-RIS communication. The learning framework is built on 
three key components: 
State Space (S) 
The system state captures all vital real-time parameters, including: 

• UAV coordinates in 3D space (xm,ym,zm) 
• RIS phase shift matrix Φ(t) 
• Transmission power Pn(t) of IoT devices 
• Channel conditions, such as path loss and interference patterns 
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Fig 8: Architecture of IRIS Algorithm 

Action Space (A) 
This defines what actions IRIS can take at any moment, including: 

• Adjusting UAV trajectories by changing direction, speed, or altitude 
• Tuning RIS phase shifts to enhance secure signal reflections 
• Dynamically allocating power for optimal signal strength and reduced leakage 

Reward Function (R (S, A)) 
The reward guides the agent toward optimal behaviour by evaluating: 

• Improvement in secrecy rate, favouring actions that strengthen the legitimate link while 
weakening the eavesdropper's reception 

• Energy efficiency, to prolong UAV and device operational life 
• Connectivity stability, ensuring seamless and secure data transmission 

Learning Process Workflow 
1. Observation: IRIS continuously collects network parameters such as UAV location, 

RIS configurations, and channel interference. 
2. Action Selection: The algorithm selects an optimal set of actions for UAV movement, 

RIS phase shifts, and power control. 
3. Environment Interaction: Actions are executed in the system, and the UAV-RIS 

network updates dynamically. 
4. Reward Computation: The effectiveness of actions is evaluated based on secrecy rate, 

energy efficiency, and network stability. 
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5. Policy Update: IRIS refines its strategy through deep reinforcement learning to improve 
future decision-making. 

Dynamic Policy Integration for Security Adaptation 
By continuously evaluating the network’s performance, IRIS dynamically adjusts its decision-
making strategies to respond effectively to changing conditions such as fluctuating channel 
quality, UAV movement, or the presence of potential eavesdroppers. This intelligent feedback 
loop ensures that the system maintains robust security and communication efficiency even 
under unpredictable environments. The policy integration mechanism is governed by: 
𝑎𝑡 = 𝛼(𝑡) ⋅ 𝑎𝑡𝑣𝑎𝑙𝑢𝑒 + �1 − 𝛼(𝑡)� ⋅ 𝑎𝑡𝑝𝑜𝑙𝑖𝑐𝑦     (20) 
where: 

• atvalue represents security-driven decisions derived from value-based analysis. 
• atpolicy is determined through real-time policy learning, ensuring flexibility in 

execution. 
• α(t) is an adaptive weighting factor that dynamically selects the best-performing 

strategy. 
The weighting factor is updated based on real-time performance metrics: 
𝛼(𝑡) = 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)/(𝑃𝑝𝑜𝑙𝑖𝑐𝑦(𝑡)𝑃𝑣𝑎𝑙𝑢𝑒(𝑡))      (21) 
where: 

• Pvalue(t) Ppolicy(t) represent security impact scores for different strategies. 
• This mechanism ensures IRIS adapts to the most effective decision-making approach 

at each time step, enhancing secrecy rate optimization while maintaining efficient 
exploration. 

Security-Oriented Reward Engineering 
To ensure IRIS prioritizes secrecy rate enhancement, an adaptive reward function is 
formulated: 
𝑅(𝑆𝑡, 𝐴𝑡) = 𝜂 ⋅ 𝑆𝑒𝑐𝑟𝑒𝑐𝑦𝑅𝑎𝑡𝑒(𝑆𝑡, 𝐴𝑡) + 𝛾𝑡 ⋅ 𝑇𝑖𝑚𝑒𝐹𝑎𝑐𝑡𝑜𝑟(𝑡) + 𝛿𝑡 ⋅ 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝐵𝑜𝑛𝑢𝑠(𝑡) 

(22) 
where: 

• SecrecyRate (St,At) measures the increase in secrecy rate at time t. 
• TimeFactor (t) encourages fast convergence by penalizing delayed optimization. 
• Exploration Bonus(t) rewards early-stage exploration to prevent the model from getting 

stuck in suboptimal solutions. 
• η, γt, δt are weighting parameters that balance different learning objectives. 

Secrecy Rate Calculation 
Secrecy rate is a key metric in physical layer security and is given by: 
𝑆𝑒𝑐𝑟𝑒𝑐𝑦𝑅𝑎𝑡𝑒 = 𝑚𝑎𝑥{0, 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒) − 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑒𝑎𝑣𝑒𝑠𝑑𝑟𝑜𝑝𝑝𝑒𝑟)} 

(23) 
where: 

• SNR legitimate is the Signal-to-Noise Ratio (SNR) at the legitimate receiver. 
• SNR eavesdropper  is the SNR at the eavesdropper. 

Key Insights: 
• If SNR eavesdropper is high, the secrecy rate decreases, requiring strategic UAV 

positioning and RIS optimization. 
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• The goal is to increase the secrecy rate by enhancing SNR legitimate while reducing 
SNR eavesdropper. 

Optimization Strategy 
1. UAV trajectory control: Adjust UAV position to create favourable propagation paths 

for legitimate users while avoiding eavesdroppers. 
2. RIS phase shifts: Optimize RIS elements to direct signals toward the legitimate receiver 

and nullify signals at the eavesdropper's position. 
3. Adaptive power allocation: Allocate transmission power dynamically to increase 

secrecy rate while reducing energy consumption. 
Performance Evaluation and Simulation Results 
The IRIS algorithm was tested using MATLAB simulations to evaluate its efficiency in UAV-
assisted RIS networks. It was compared with the Proximal Policy Optimization (PPO) method. 
Results showed that IRIS improved the secrecy rate, energy efficiency, and adaptability under 
dynamic network conditions. Its optimized UAV path planning and RIS configuration 
outperformed PPO in convergence speed and security performance, proving IRIS’s potential 
in enhancing secure wireless communication. 
Secrecy Rate Improvement 
One of the core objectives of IRIS is to maximize the secrecy rate by dynamically adjusting 
UAV positioning, RIS phase shifts, and power allocation in the presence of potential 
eavesdroppers. The secrecy rate is defined as: 
𝑅𝑠 = 𝑚𝑎𝑥{0, 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒) − 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑒𝑎𝑣𝑒𝑠𝑑𝑟𝑜𝑝𝑝𝑒𝑟)} (24) 
where SNRlegitimate and SNReavesdropper represent the received signal-to-noise ratios at the 
legitimate receiver and the eavesdropper, respectively. 

 
Fig 9: Graphical representation of secrecy rate comparison 

The simulation results demonstrate that IRIS achieves a 29.7% increase in the average secrecy 
rate compared to PPO-based optimization. This is attributed to: 

• Optimized RIS phase shifts, which focus signal reflections on legitimate users while 
minimizing leakage to eavesdroppers. 

• Adaptive UAV positioning, which dynamically adjusts the UAV’s trajectory to 
maintain secure communication links. 

• Intelligent power allocation, which optimizes transmission power to enhance security 
while conserving energy. 



International Journal of Innovation Studies 9 (2) (2025) 

 

 911 

The above results confirm that IRIS is highly effective in mitigating eavesdropping threats and 
ensuring secure wireless transmissions in UAV-RIS networks. 
Convergence Speed 
The effectiveness of a reinforcement learning-based approach depends on its ability to quickly 
converge to an optimal policy while maintaining stability in decision-making. The convergence 
rate was evaluated based on the number of training episodes required for the secrecy rate to 
stabilize. 
Simulation results reveal that IRIS achieves 28.6% faster convergence compared to PPO, 
primarily due to: 

• Adaptive exploration-exploitation mechanisms, which prevent excessive exploration 
and accelerate policy refinement. 

• Enhanced experience replay buffer, which prioritizes critical learning samples, 
reducing unnecessary training iterations. 

• Hybrid decision-making process, which integrates policy optimization with value-
based learning, improving stability during training. 

 

 
Fig 10: Graphical output of Convergence speed 

These results confirm that IRIS can rapidly learn an optimal policy while minimizing training 
time, making it highly suitable for real-time UAV-RIS network deployments. 
Energy Efficiency 
Energy efficiency is a critical factor in UAV-assisted networks, as excessive power 
consumption can limit UAV endurance and network sustainability. The IRIS framework 
introduces intelligent power control mechanisms that reduce energy consumption by 18%, 
without compromising security performance. 
The energy efficiency improvement is achieved through: 

• UAV trajectory optimization, which minimizes unnecessary movements, reducing 
propulsion energy expenditure. 

• RIS element selection, which dynamically activates only the necessary RIS elements to 
optimize signal reflections. 
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• Power-aware reward function, which penalizes excessive power allocation while 
maintaining secrecy rate objectives. 

 
Fig 10: Comparison of Energy efficiency 
By intelligently balancing power consumption and security requirements, IRIS enables longer 
operational lifespans for UAVs and RIS-assisted communication nodes. 
Robustness to Network Variability 
One of the critical challenges in UAV-RIS networks is their sensitivity to dynamic 
environmental changes, such as: 

• Fluctuating wireless channels 
• Eavesdropper mobility 
• Interference from external networks 
• Multiple UAV and IoT user configurations 

IRIS is designed to adapt to varying network conditions by incorporating: 
• State-aware reinforcement learning, which dynamically adjusts UAV-RIS 

configurations based on real-time environmental feedback. 
• Multi-scenario optimization, where IRIS is tested under both static and mobile UAV 

deployments. 
• Robust trajectory planning, which ensures secure communication even in the presence 

of adversarial jamming or interference. 
Simulation results show that IRIS maintains stable secrecy performance under different UAV 
speeds, eavesdropper positions, and network densities, making it highly resilient for real-world 
applications in disaster response, IoT, and surveillance. 
Secrecy Rate Performance Analysis 
The secrecy rate performance curve illustrates the effectiveness of IRIS in optimizing secure 
communications over multiple training episodes. The performance is measured as: 
𝑆𝑒𝑐𝑟𝑒𝑐𝑦𝑅𝑎𝑡𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝑚𝑖𝑛{𝑆𝑒𝑐𝑟𝑒𝑐𝑦𝑅𝑎𝑡𝑒 × 100,100}   (25) 
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Fig 11: Secrecy rate Performance analysis over training episodes 

Key observations from the secrecy rate performance analysis: 
• IRIS consistently achieves near-optimal secrecy rates over training episodes. 
• Performance stability is reached faster due to the hybrid learning strategy. 
• Even under varying interference levels, IRIS maintains a high secrecy rate, validating 

its robustness. 
The secrecy rate curve demonstrates that IRIS effectively mitigates eavesdropping risks and 
outperforms PPO in achieving a stable and higher secrecy rate over time. 
Comparative Analysis with PPO 
The updated comparison reflects the improved PPO performance while maintaining IRIS’s 
superior efficiency. 
Metric IRIS PPO Improvement 

Secrecy Rate 65.21% 50.25% 29.7% 
Convergence Speed 150 episodes 210 episodes 28.6% faster 

Energy Efficiency 30% reduction 12% reduction 18% improvement 

Robustness High Moderate Better adaptability 
Table1: Comparative analysis of IRIS with PPO 
Key Takeaways from the Updated Performance Analysis 

1. Secrecy Rate: The improved PPO results (50.25%) confirm that PPO is a competitive 
reinforcement learning approach, but IRIS still outperforms it by 29.7%, reaching 
65.21% secrecy rate. 

2. Convergence Speed: IRIS learns faster (150 episodes) compared to PPO, which still 
requires 210 episodes for stability. 
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3. Energy Efficiency: PPO improves energy consumption (12% reduction), but IRIS 
remains more power-efficient with 18% reduction. 

4. Robustness: IRIS maintains higher security performance even under dynamic network 
conditions, ensuring superior adaptability. 

Conclusion 
This study introduces IRIS (Intelligent Reconfigurable Integrated Security), a novel framework 
developed to improve secrecy rate and communication integrity in UAV-assisted RIS 
networks. IRIS uses reinforcement learning to intelligently coordinate UAV flight paths, RIS 
phase configurations, and transmission power control. The system dynamically adapts to 
evolving network conditions to reduce eavesdropping threats while maintaining energy 
efficiency. MATLAB-based simulations validate the superiority of IRIS over standard methods 
like PPO, demonstrating improved secrecy performance, energy use, and adaptability. IRIS 
shows strong potential for use in critical applications such as disaster recovery, IoT 
communications, and secure infrastructure monitoring. Looking ahead, the research aims to 
scale IRIS for larger UAV networks, integrate edge AI for real-time processing, and enhance 
its defences against advanced cyber threats. Through this work, IRIS bridges AI-driven security 
with adaptive wireless communication, offering a resilient, autonomous solution for next-
generation UAV networks. 
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