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Abstract:
This paper introduces a novel deep reinforcement learning (DRL) framework Intelligent
Reconfigurable Integrated Security (IRIS) designed to enhance the secrecy and efficiency of
communication in Reconfigurable Intelligent Surface (RIS) assisted Unmanned Aerial Vehicle
(UAV) networks. IRIS jointly optimizes UAV flight trajectories, RIS phase configurations, and
power allocation strategies to strengthen physical-layer security in environments susceptible to
eavesdropping and signal interference. Unlike traditional (DRL) methods such as Proximal
Policy Optimization (PPO), which often struggle with high-dimensional optimization tasks in
dynamic wireless systems, IRIS employs an adaptive exploration-exploitation mechanism
tailored for secure UAV operations. The framework dynamically responds to environmental
changes, maximizing the secrecy rate while minimizing energy consumption and latency.
Simulation results, conducted using MATLAB, demonstrate that IRIS significantly
outperforms conventional approaches across multiple performance indicators, including
secrecy rate, convergence speed, and energy efficiency. A comprehensive sensitivity analysis
of key hyperparameters further validates the model's robustness across various deployment
scenarios. The results highlight IRIS as a promising algorithm for secure communication in
UAV-enabled applications such as disaster relief, critical infrastructure monitoring, and next-
generation [oT deployments.
Index terms: Intelligent Reconfigurable Integrated Security (IRIS), Reconfigurable Intelligent
Surface (RIS), Unmanned Aerial Vehicle (UAV), Deep Reinforcement Learning (DRL).
INTRODUCTION:
The integration of Unmanned Aerial Vehicle (UAV) communications with Reconfigurable
Intelligent Surface (RIS) technology has opened new frontiers in wireless communication,
offering enhanced coverage, improved spectral efficiency, and dynamic reconfigurability. This
convergence is particularly promising for next-generation communication networks, where
flexibility and adaptability are critical. However, it also introduces new security vulnerabilities,
especially in applications where UAVs operate in open-air environments and RIS units
manipulate electromagnetic signals. These features inherently expose the network to
eavesdropping, signal jamming, and other forms of malicious interference, necessitating
security strategies that extend beyond traditional cryptographic methods [1, 2].
To mitigate these risks, recent studies have turned to physical layer security (PLS) techniques,
which offer a promising alternative for safeguarding wireless transmissions without the
computational burden associated with higher-layer encryption. When effectively applied to
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RIS-assisted UAV networks, PLS methods can significantly enhance confidentiality by
leveraging the dynamic propagation characteristics of the wireless channel itself [3]. Despite
this potential, implementing secure communications in such environments presents complex
challenges. Chief among them are the mobility of UAVs, the high-dimensional space of RIS
phase shift configurations, and the demand for energy-efficient operation without
compromising communication integrity [4].
Standard optimization techniques and even contemporary deep reinforcement learning (DRL)
models struggle to manage these interconnected variables effectively. Algorithms such as
Proximal Policy Optimization (PPO) and Twin Delayed Deep Deterministic Policy Gradient
(TD3) have shown encouraging results in resource management and control tasks in wireless
systems. However, when applied to UAV-RIS scenarios where trajectory optimization, phase
configuration, and real-time security adaptation must be co-optimizing these methods often fall
short. They suffer from slow convergence and limited ability to consistently maintain high
secrecy rates in environments with rapidly changing channel conditions [5].
To address these limitations, we propose IRIS (Intelligent Reconfigurable Integrated Security)
a novel deep reinforcement learning framework tailored specifically for enhancing physical
layer security in UAV-RIS communication networks. The IRIS framework introduces the
following key innovations:
1. Adaptive exploration-exploitation mechanisms that intelligently balance the trade-off
between security maximization and system performance.
2. Joint optimization of UAV trajectories and RIS phase shift configurations, enabling the
formation of robust and secure communication pathways in real time.
3. Context-aware power allocation strategies that dynamically allocate transmit power to
minimize energy consumption while sustaining high secrecy rates.
4. Advanced feature extraction methods that capture non-linear interactions between
UAV mobility, RIS behaviour, and channel threats for more informed decision-making
[6].
Through extensive simulations in dynamic network scenarios, IRIS demonstrates substantial
performance gains over existing methods. Specifically, it achieves a 29.8% improvement in
average secrecy rate and a 26.7% acceleration in convergence time compared to baseline DRL
approaches [7]. These improvements are maintained even under challenging conditions
involving multiple eavesdroppers, fluctuating signal interference, and varying mobility
patterns, reinforcing IRIS's suitability for mission-critical and security-sensitive applications,
including disaster response, military communications, and industrial IoT deployments.
Related works:
a. UAV-assisted Wireless Communications
Unmanned Aerial Vehicles (UAVs) have emerged as dynamic assets in wireless networks,
offering flexible coverage and rapid deployment. Early research established their role as aerial
relays and base stations [8], while recent studies explored swarm coordination using distributed
learning [9]. Energy-efficient trajectory planning [10] and cognitive radio integration [11]
further enhance UAV adaptability, making them key enablers of resilient, on-demand, and
intelligent next-generation communication systems.
b. Reconfigurable Intelligent Surfaces

894



International Journal of Innovation Studies 9 (2) (2025)
Reconfigurable Intelligent Surface (RIS) technology has become a key innovation in shaping
smart radio environments. Foundational work established RIS to control wireless propagation
through passive beamforming [12]. Later advancements introduced efficient phase
optimization techniques [13,14], enabling precise signal steering. Recent studies have further
shown that RIS significantly improves energy efficiency and spectral utilization, making it
essential for future low-power, high-performance wireless communication systems [15].

UAV

§ RIS placed in
g ) a . buildings

-

10T devices loT devices

Fig 1: RIS based UAV communication in IoT devices
c. Deep Reinforcement Learning in Wireless Networks
Deep Reinforcement Learning (DRL) has emerged as a powerful tool for optimizing wireless
networks. A comprehensive review highlighted its diverse applications across communication
layers [16]. Notably, Proximal Policy Optimization (PPO) has shown stable performance in
resource allocation tasks [17,18], while Twin Delayed Deep Deterministic Policy Gradient
(TD3) excels in continuous control scenarios, with further improvements achieved through
hybrid learning architectures tailored for wireless systems [19,20].
d. Physical Layer Security
Physical layer security has become a vital strategy for safeguarding wireless communication.
Early work focused on optimizing secrecy rates under varying channel conditions [21], while
subsequent studies introduced artificial noise techniques to disrupt eavesdroppers [22].
Advanced protocols tailored for next-generation networks have also been developed [23], and
recent efforts have emphasized trajectory-based optimization to enhance the security of UAV-
enabled systems in dynamic environments [24].
e. Integration of UAV and RIS Technologies
The fusion of UAV and RIS technologies is gaining momentum as a next-generation wireless
communication strategy, enabling remarkable flexibility in how signals are delivered and
directed. This integration provides significant advantages in spatial coverage and
electromagnetic control. At the same time, it introduces a new set of engineering challenges,
including real-time coordination, adaptive optimization, and maintaining link reliability in
dynamic conditions paving the way for intelligent, reconfigurable network architectures.
Channel Modelling and Characterization
Recent advancements have introduced detailed channel models tailored for UAV-RIS
communication systems. Foundational work by [25] focused on cascaded channel
characterization, highlighting the importance of accounting for the unique three-dimensional
structure of UAV to RIS links. Their analysis revealed that conventional models often fall short
especially in urban environments where signal paths are highly dynamic and elevation-
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dependent, necessitating more accurate modelling to reflect real-world conditions and improve
communication reliability The cascaded channel can be expressed as

h_cascade = G RIS—GND * & x G_UAV — RIS (1)

where G_RIS-GND represents the RIS-to-ground channel matrix, @ denotes the RIS phase-
shift matrix, and G_UAV-RIS captures the UAV-to-RIS channel characteristics.
Joint Optimization Frameworks
a. Trajectory and Phase Shift Optimization
Jointly optimizing UAV trajectories and RIS phase shifts poses a significant challenge in
dynamic wireless environments. A comprehensive framework by [26] addressed this through
real-time phase tuning aligned with UAV mobility, communication-aware path planning, and
integrated power and RIS configuration strategies. Their approach achieved a 35-40% increase
in throughput over conventional methods, especially in multi-user ground scenarios,
demonstrating the potential of coordinated aerial and surface reconfiguration for enhanced
performance.
b. Energy Efficiency Considerations
Notable advances in energy-efficient UAV-RIS communication were introduced by [28],
focusing on adaptive resource use. Their framework included dynamic power control based on
channel variations, selective RIS element activation to reduce unnecessary energy usage, and
flight path optimization that balanced propulsion and communication demands. This holistic
approach led to a 25% reduction in total energy consumption while consistently meeting
quality-of-service requirements, showcasing the effectiveness of intelligent, energy-aware
system design.
Security Enhancements
A detailed study on physical layer security in UAV-RIS networks by [27] introduced key
innovations. These included null-space-based secure beamforming, artificial noise injection,
and RIS phase optimization for enhanced confidentiality. Additionally, anti-jamming strategies
like adaptive UAV routing, cooperative RIS jamming, and interference-aware power control
were proposed. Collectively, these techniques improved secrecy rates by up to 45% compared
to traditional methods, underscoring their potential for secure wireless communication systems.
Implementation Challenges
Recent studies have highlighted several key implementation challenges that must be addressed
for practical deployment of UAV-RIS communication systems:
1. Channel Estimation
o The high mobility of UAVs demands frequent and accurate channel
estimation.
o The cascaded nature of UAV—RIS—ground links increases the complexity of
modelling and estimation.
o Limited feedback bandwidth and latency constraints make real-time updates
difficult in field conditions.
2. Hardware Constraints
o Real-world RIS hardware often supports only discrete phase shift levels,
limiting beamforming precision.
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o UAV payload limitations restrict the size and weight of communication
modules and onboard processing units.
o Managing power consumption is critical for both UAV endurance and
continuous RIS operation.
3. Coordination Overhead
o RIS phase adjustments must occur in near real-time to respond to dynamic
UAV positions and channel conditions.
o Centralized control systems can introduce significant communication
overhead.
o Maintaining synchronization between moving UAVs, static RIS elements, and
ground nodes is operationally challenging.
Performance Analysis
Comprehensive evaluations of UAV-RIS systems have uncovered several important
performance insights:
1. Coverage Enhancement
o Strategic positioning of UAVs and RIS elements can expand network coverage
by up to 40%.
o Users located at the network’s edge experience noticeable gains in signal
quality.
o The system maintains strong performance even in non-line-of-sight (NLoS)
environments, increasing overall reliability.
2. Capacity Scaling
o System capacity scales linearly with the number of RIS elements under ideal
conditions.
o However, the benefit diminishes beyond certain UAV altitude levels, requiring
altitude optimization.
o A balance must be maintained between maximizing coverage and achieving
optimal capacity.
3. Latency Reduction
o Optimized placement of UAVs and RIS can reduce end-to-end latency by 30—
50%.
o High-mobility conditions are better supported with adaptive system
configurations.
o These improvements directly benefit delay-sensitive services such as real-time
monitoring and control.
f. Research Gaps and Our Contributions
Despite notable advancements in UAV-RIS research, several important gaps persist in current
literature:
1. Limited focus on joint optimization of UAV trajectories and RIS configurations
specifically for enhancing security.
2. Inadequate exploration of reinforcement learning techniques tailored for secure UAV-
RIS communications.
3. Absence of unified frameworks that address multiple security objectives
simultaneously.
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4. Lack of efficient algorithms suitable for deployment in environments with constrained
computational and energy resources.
This study addresses these challenges through the following key contributions:
1. The design of IRIS, a dedicated reinforcement learning framework for optimizing
security in UAV-RIS systems.
2. Extensive benchmarking against leading algorithms such as PPO, validating
performance through detailed simulations.
3. Incorporation of multi-objective security criteria into a single, integrated learning
model.
4. Careful attention to real-world constraints, including system limitations, mobility
dynamics, and deployment feasibility.
CONTRIBUTIONS AND ORGANISATIONS
In this paper, we investigate the optimization of a RIS-enabled UAV communication network
with multiple UAVs and IoT devices, focusing on physical layer security enhancement through
intelligent trajectory planning and RIS phase shift configuration. We consider a challenging
scenario where multiple UAVs serve as aerial base stations operating in mmWave frequencies,
while an RIS with multiple elements assists in forming reconfigurable wireless links to combat
potential eavesdropping attempts. The joint optimization of UAV trajectories, beamforming
vectors, and RIS phase shifts is pursued through a novel hybrid deep reinforcement learning
approach.
Main Contributions
In this paper, we explore how to improve security in a communication network that uses UAVs
and Reconfigurable Intelligent Surfaces (RIS) to connect multiple [oT devices. Our focus is on
physical layer security, using smart UAV flight paths and RIS configurations. We introduce a
deep reinforcement learning-based solution called IRIS, designed specifically to handle the
complex challenges of this kind of system. The contributions are:
IRIS Framework:
We present a new algorithm, IRIS, that helps UAVs plan their movement in 3D space while
also adjusting the RIS phase shifts and beamforming settings. It solves a difficult problem
involving many interacting parts and ensures secure data transmission at mmWave frequencies.
Realistic Channel Model:

We build a detailed model for how signals travel in this system. It includes real-world details
like different path loss in line-of-sight (LoS) and non-line-of-sight (NLoS) situations, how RIS
elements are spaced, and uses practical settings like a 28 GHz frequency and 200 MHz
bandwidth.

Smart Learning Setup:

We design how the Al agent "sees" the environment, including UAV positions, their speeds,
and RIS settings. The learning actions include both moving the UAVs and adjusting RIS
settings, while aiming to improve a security-focused reward (called secrecy rate).

Efficient Training Process:
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We train our model using a large memory buffer (2 million past experiences) and batches of
512 samples. We use deep neural networks with three layers of 1024, 512, and 256 neurons,
which help the model learn faster and perform better than traditional methods.
Strong Experimental Results:

We compare IRIS with standard algorithms like PPO. Our results show better secrecy rates,
faster learning, and more stable performance. We also test how sensitive IRIS is to different
settings and show it works well even under tough conditions.

SYSTEM MODEL

We focus on a secure communication setup that brings together multiple UAVs, IoT devices,
and a Reconfigurable Intelligent Surface (RIS). The goal of this system is to improve physical
layer security by smartly adjusting the positions of UAVs and configuring the RIS phase shifts
to create safer communication channels.

IRIS Framework Architecture

Deep Reinforcement Learning Framework

UAV Trajectory Planning RIS Configuration Beamforming
= 3D Mobiity Constraints = 54 Reconfigurable Elements - mmWave Communication
= Position Optimization = Phase Shift Control = Security Optimization
= Dynamic Path Planning = Element Spacing = Secrecy Rate Metrics
s N
Channel Model Training Framework
= Path Loss (LoS/NLoS) = Experience Replay (2M samples)
= RiS-specific Parameters - Batch Size: 512
= Carrier Frequency: 28 GHz = NN Architecture: [1024, 512, 258)

Performance Evaluation

Baseline Statistical Convergence Parameter
Comparison Testing Analysis Sensitivity

Fig. 2: IRIS Framework Architecture
a. Network Architecture
The system includes several key components:
e A group of M UAVs, labelled as U = {1, 2, ..., M}
e N IoT devices, denoted by NV = {1, 2, ..., N}
e A Reconfigurable Intelligent Surface (RIS) with K reflecting elements, represented as

R={1,2,..,K}
e A set of legitimate receivers and potential eavesdroppers within the communication
range.

Each UAV functions as an aerial relay and operates in a three-dimensional space. Its position
is defined by the coordinates (Xm, Ym, Zm) € R?, where m refers to the m-th UAV in U. The RIS
is placed at a fixed ground location and consists of K passive elements. Each element can apply
a programmable phase shift i in the range [0, 2nt], where k refers to the k-th element in .
This configuration helps in intelligently reflecting signals to enhance secure communication
paths.

1) UAV Mobility Model

For mobile scenarios, UAV positions evolve according to

899



International Journal of Innovation Studies 9 (2) (2025)

p_m(t+1) =x_m(t) + y m(t)At + 1/2 a_m(t), Atx? (2)

where: p m(t) = [x_m(t), y m(t), z m(t)]" is the position vector, v_m(t) is the velocity vector,
a_m(t) is the acceleration vector, At is the time step interval

2) RIS Configuration
The RIS phase shift matrix ®(t) evolves dynamically:
@(t) = diag(e™{jo.(t)},...,e*jo(t)}) 3)

with constraints: Ok(t) € [0, 2xt] and [e"{jOk(t)}| = 1

UAV-RIS Network System Model

- K Elements
o e € [0, 2Nn]

Legitimate

Receiver

1oTz2

UAV Mobility Model: p_m(t+1) = p_m(t) + v_m{)At + Yza_m(t)At>
RIS Configuration: PD(t) = diag(e™{jei(t)}, ..., e™NiBx(1)})

Fig 3: UAV-RIS Network System Model
b. Channel Model
1) Direct Channel
The channel between [oT device n and UAV m is modeled as:

h{n,m} = VBod_{n,m}*—a} g_{n,m} (4)

where: o represents the path loss at reference distance, d {n, m} is the Euclidean distance, o
denotes the path loss exponent, g {n, m} represents small-scale fading following CN'(0,1)
The path loss model incorporates both LoS and NLoS components:

PL(d) = 20 log 10(4nf _c/c) + 10alogl0(d)n_o (5)

where: f c is the carrier frequency, c is the speed of light, n_c represents shadow fading with
variance ¢°

2) RIS-Assisted Channel

The cascaded channel through the RIS is given by:

HA{RIS}=Gr¢G.t (6)

where: G_r € CK™M ig the channel matrix from RIS to UAVs, G_t € C*N is the channel
matrix from IoT devices to RIS., ® = diag(e"{j01}, ..., €*{j6}) is the RIS phase shift matrix
The individual elements of G_r and G _t follow:

[G_rl{k,m} = VBod{k,m}"{=a_r} g_{k,m}*r [G_t]{k,n} =
VBod{k, m}*(—a_t} g_{k,n}"t (7
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R —hannel Model: Direct and RIS-Assisted Paths
- Direct Path
————— RIS-Assisted PatH
Direct Channel (h_{n, : 3.ip
RIS
diag(e~{j©1}, ..., e
K elements
Direct Channel Model: RIS-Assisted Channel Model:
h_{n,m} = VBod_{n,m} -a} g_{n,m} H (RIS} =G r® G_t
PL(d) = 20logaio(4Tif_c/c) + [G_rl_{k.m} = VBod_{k,m}*{-a_r} g_{k.m}" r

flealogie(chidn=c [G_t]_{k.n} = VBod_{k,n}-a_t} g_{k,n}"t

Fig 4: Channel Model of RIS configuration
C. Signal Model
1) Transmitted Signal
The transmitted signal from [oT device n is:

x_n(t) = VP_n(t)s_n(t) (8)

where: P_n(t) is the adaptive transmit power, s_n(t) is the normalized information signal
2) Received Signal
The received signal at UAV m can be expressed as:

Y () = Ype1 N(h_{n_m(t) + H_{RIS n_m}(t)V P_n(t)x_n(t) +w_m(t) 9)

where: w_m(t) ~ CN(0, o) represents AWGN, H_{RIS,n,m}(t) denotes the cascaded
channel through the RIS

3) SINR Model

The instantaneous SINR at UAV m for IoT device n is:

y{nm}(t) = h_{n.m}(t) + H{RIS n_.m}(t)|*|Ppn)/ Riz1i # " |h{i,m}(t) +
H_{RIS, i, m}(t)|?P_i(t) + d?) (10)
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Signal Model and SINR Analysis

RIS
e +w_m(t)
_n(t) = YP_n(t)s_n
Transmitted Signal: Received Signal:
x_n(t) = \’P_n(t)s_n(t) y_m(t) = Yn=aN (h_{n,m}(t) + H_{RIS,n,m}(t)) VP_n(t) x_n(t) + w_m(t)
P_n(t): Adaptive transmit power w_m(t) ~ €NV (0, o?): Additive White Gaussian Noise
SINR Model:
v_{n,m}(t) = |h_{n,m}(t) + H_{RIS,n,m}(t)|*P_n(t)
Si=1,i#aN [h_{i,m}(t) + H_{RIS,i,m}t)|2P_i(t) + o2

Fig 5: Signal Model
D. Secrecy Rate Formulation
1) Legitimate Channel Capacity
The achievable rate at the legitimate receiver is:

R1(t) = log,(1 +y,1(t)) (11)

where y_1(t) is the received SINR at the legitimate receiver.
2) Eavesdropper Channel Capacity
The eavesdropper's achievable rate is:

Re(t) = log,(1 +ye(t)) (12)

where y_e(t) is the received SINR at the eavesdropper.
3) Secrecy Rate
The instantaneous secrecy rate is defined as:

Rs(®) = [R:(®) —R.(D]" (13)

E. Optimization Problem
The security optimization problem can be formulated as:

max_{U(t), P(t), P()} [ o" [logz(1 + y_1(8)) — logo(1 + ye(t)]*dt  (14)

subject to: Y=1* |ok(t)| =1, Vk € R, t € [0,T], 0 <P _n(t) <P _max, Vn € N, t € [0,T],
(x_m(t), y m(t), z m(t)) € A, Vm € U, t € [0,T], |[v._m(t)| <v_max, Vm € U, t € [0,T],
la_m(t)| <a max, Vm € U, t € [0,T]

where:

U(t) represents time-varying UAV position,

®(t) denotes time-varying RIS phase shifts,

P(t) indicates time-varying transmit powers,

A defines the feasible flight region for UAVs,

v_max and a_max are the maximum allowed velocity and acceleration
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Secrecy Rate Formulation and Optimization Framework
RIS

Legitimate

R_I(t)

Eavesdropper
R—e(t)

Channel Capacity:
Legitimate: R_I(t) = logz(1 + y_I(t))
Eavesdropper: R_e(t) = logz(1 + y_e(t))
Secrecy Rate: R_s(t) = [R_I(t) - R_e(t)]*

Optimization Problem:

maximize [oT R_s(t)dt

subject to:

1. Sk=1K |pe(t)] =1, vk € R, t e [0,T]

LO0=P_Nn(t)=P_max,vn € N, t  [0,T]
L (em(t), y_m(t), z_m()) € A, vm € U, t € [0,T]
Slvem®)] = v_max, vm e U, t e [0,T]
. la_m(@)| =a_max,vm e U, t € [0,T]

ah N

Fig 6: Secrecy Rate Formulation and Optimization framework
To tackle this optimization challenge, we introduce the IRIS algorithm, which effectively
manages secure communication in both fixed and dynamic environments. It simultaneously
adjusts UAV flight paths, RIS phase settings, and transmission power, all while accounting for
practical limitations and real-time changes in network conditions.
IRIS BASED SOLUTION FOR MAXIMUM SECRECY RATE OPTIMIZATION:
IRIS (Intelligent Reconfigurable Intelligent Security) is a new framework developed to
strengthen the security of UAV-RIS networks. It combines deep reinforcement learning with
physical layer security methods to dynamically control UAV positions, RIS phase settings, and
power usage. This intelligent system continuously adapts to changing network conditions,
aiming to improve security while maintaining energy efficiency and communication quality.
Problem Formulation for Maximum Secrecy Rate
The secrecy rate Rs(t) in UAV-RIS networks relies on fine-tuning several connected factors.
These include planning the UAVs’ flight paths to limit the chances of eavesdropping, adjusting
the RIS phase shifts to strengthen signals for intended users while reducing unintended signal
leaks, and managing transmit power levels to lower interception risks without compromising
communication reliability.
The optimization problem can be formulated as:

T
el b O -
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UAV-RIS Secrecy Rate Optimization Framework

Mobility, VVelocity Acceleration Constraints
UAV

Power Constraint @

Phase Shift Constraiht
RIS

EpMranced Signal ~._ Minimized Signal

Legitimate User Eavesdropper

IRIS Optimization Framework

Secrecy Rate
Maximization

UAV Trajectory
Optimization

—IRIS Phase Shift Controlp+ Power Allocation >

Fig 7: UAV-RIS Secrecy rate optimization framework
Phase Shift Constraints:

YK 1 ¢k(t) |I=1,Vk € R, t € [0,T] (16)

where ¢k(t)represents the phase shift of the kth RIS element.
Reconfigurable Intelligent Surfaces (RIS) are made up of many reflective elements that can
change the phase of incoming signals. This allows them to boost signal strength, reduce
interference, and improve communication security. However, these elements can only adjust
the signal’s direction or phase they cannot increase its power.

e Each RIS element k applies a specific phase shift ¢i(t) to the signal it reflects, altering
the direction of wave propagation.

e Because RIS is a passive device, it doesn't boost the signal's power it only adjusts its
phase. This is why the unit-modulus condition is used, ensuring each reflection has a
magnitude of 1.

e The combined phase shifts must be controlled precisely to steer the signal
constructively toward the legitimate receiver and destructively toward any potential
eavesdropper.

e This condition ensures that all phase shifts are selected strategically, allowing the RIS
to form a focused beam that strengthens the intended communication link while
minimizing signal leakage elsewhere.

Physical Interpretation

e Signal Enhancement: Through precise control of phase shifts, the RIS can strengthen
signal transmission at targeted positions, such as the location of the legitimate receiver.

e Eavesdropper Suppression: By fine-tuning the phase adjustments, the RIS is capable of
minimizing signal reflections toward unintended listeners, making it harder for them to
intercept or decode the data.
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Security Improvement: These constraints help the RIS to direct signals effectively
toward trusted users while weakening or eliminating signal paths in the direction of
possible eavesdroppers, thereby enhancing overall communication security.

Optimization Impact
The RIS phase shifts are optimized to enhance the secrecy rate by ensuring:

1.

Constructive interference at the legitimate receiver, which strengthens the desired
signal.

Destructive interference at the eavesdropper’s location, effectively weakening any
intercepted signal.

Minimal signal leakage toward unintended directions by continuously adapting the
phase shifts based on the UAV's location, user distribution, and the surrounding channel
conditions through an iterative optimization process.

Transmit Power Constraints:

0 < Pn(t) < Pmax,vn € N,t € [0,T] (17)

where Pn(t) represents the transmission power of the UAV or an IoT device at time t, and

Pmax is the maximum allowable transmit power.
The transmit power constraint ensures that UAVs and IoT devices operate within safe and

efficient power levels to support security and reliability:

Lower Limit: The condition Pn(t)>0 guarantees that transmit power is always non-
negative.

Upper Limit: The cap Pn(t)<Pmax avoids excessive energy use, helping to reduce
interference, conserve battery life, and limit signal strength received by eavesdroppers.
Security Factor: If power levels are too high, it can unintentionally boost the
eavesdropper’s ability to intercept signals. Hence, optimized power control is essential
to protect data without compromising efficiency.

Physical Interpretation

Energy Efficiency: Since loT devices typically rely on limited battery power, keeping
energy use low helps extend their operational time.

Reduced Interference: By capping transmission power, the system avoids unnecessary
signal overlap with nearby devices, ensuring cleaner communication.

Improved Security: Adjusting power levels dynamically allows just enough signal
strength for reliable communication without boosting signal levels in a way that
benefits eavesdroppers.

Optimization Impact
The optimization framework adjusts transmit power intelligently based on real-time network

conditions:

1.

Boosting Power when the authorized receiver has a strong connection and the
eavesdropper’s signal is weak maximizing secure data delivery.

Reducing Power when the eavesdropper has a better chance of intercepting the signal
minimizing potential data leakage.

Balancing Power Use to ensure communication remains secure and efficient, without
unnecessary energy consumption.

UAYV Mobility Constraints:
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(xm(t), ym(¢t),zm(t)) € A,ym € U,t € [0, T] (18)

where (x m(t), y m(t), z m(t)) represents the UAV’s position in a 3D space at time t and A is
the predefined flight zone.
UAVs serve as aerial base stations in RIS-assisted networks, allowing dynamic placement to
strengthen secure communication. Mobility constraints are crucial for safe and strategic
operation:
e Defined Flight Zone: Each UAV must stay within a predetermined safe airspace,
ensuring it operates within authorized boundaries.
e Geographical Compliance: UAVs must avoid restricted zones, adhere to aviation
regulations, and follow mission-specific location limits.
e Security Optimization: UAV positions are carefully chosen to strengthen signals for
legitimate receivers while minimizing the possibility of eavesdropping.
Physical Interpretation
e Coverage Optimization: Strategic positioning of UAVs enhances signal delivery to
legitimate users, improving both communication quality and secrecy.
e Obstacle Avoidance: UAVs must navigate around physical barriers, restricted airspace,
and environmental hazards to maintain stable operation.
e Security Optimization: By adjusting their positions, UAVs can limit the signal exposure
to potential eavesdroppers, reducing the risk of interception.
Optimization Impact
1. Navigating to strong-signal zones: The UAVs adjust their path to remain close to
legitimate users, where signal strength is highest.
2. Evading eavesdropper visibility: They avoid flight paths that give potential
eavesdroppers a direct line-of-sight to the communication link.
3. Maintaining safe airspace limits: UAVs operate within designated boundaries,
balancing safety regulations with the goal of maximizing the secrecy rate.
Velocity and Acceleration Limits:

| vm(t) I< vmax, | am(t) |< amax,vm € U,t € [0,T] (19)

where vm(t) and am(t) denote the UAV’s velocity and acceleration, respectively, with limits
Vmax and amax.
e Speed Regulation: The velocity limit keeps UAVs from flying too fast, helping
maintain consistent and reliable coverage across the network.
e Smooth Navigation: The acceleration cap ensures UAVs avoid sudden, jerky
movements, promoting flight stability and reducing energy usage.
Physical Interpretation
e Steady Operation: Maintaining moderate speeds allows UAVs to remain stable in flight
and reduces disruptions in communication signals.
e Energy Conservation: Controlled acceleration helps prevent unnecessary battery drain,
supporting longer missions.
e Consistent Security: Smooth navigation ensures the secrecy rate remains stable,
lowering the chance of signal interception.
Optimization Impact
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The UAV’s path is optimized to achieve the following:

1. Ensure stable communication by maintaining consistent coverage for authorized users

through smooth movement.

2. Minimize interception risks by adjusting its route to weaken the signal path toward

potential eavesdroppers.

3. Enhance energy efficiency by avoiding unnecessary changes in speed or direction.
The overall goal is to maximize the secrecy rate Rs(t) by intelligently coordinating UAV
positioning, RIS phase adjustments, and transmit power levels in real time.

IRIS ALGORITHM CORE CONCEPT AND WORKFLOW:

The Intelligent Reconfigurable Integrated Security (IRIS) algorithm is a novel deep
reinforcement learning-based framework developed to boost the secrecy rate in UAV networks
assisted by Reconfigurable Intelligent Surfaces (RIS). Setting itself apart from traditional
methods, IRIS continuously learns and adapts in real-time repositioning UAVs, fine-tuning
RIS phase shifts, and managing transmit power to maintain a communication network that is
not only secure but also energy efficient.

Learning-Based Security Optimization

IRIS uses reinforcement learning (RL) to continuously learn and refine strategies that improve
the security and efficiency of UAV-RIS communication. The learning framework is built on
three key components:

State Space (S)

The system state captures all vital real-time parameters, including:

e UAYV coordinates in 3D space (xm,ym,zm)

e RIS phase shift matrix ®(t)

e Transmission power Pn(t) of IoT devices

o Channel conditions, such as path loss and interference patterns
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Fig 8: Architecture of IRIS Algorithm
Action Space (A)
This defines what actions IRIS can take at any moment, including:
e Adjusting UAV trajectories by changing direction, speed, or altitude
e Tuning RIS phase shifts to enhance secure signal reflections
e Dynamically allocating power for optimal signal strength and reduced leakage
Reward Function (R (S, A))
The reward guides the agent toward optimal behaviour by evaluating:
o Improvement in secrecy rate, favouring actions that strengthen the legitimate link while
weakening the eavesdropper's reception
o Energy efficiency, to prolong UAV and device operational life
o Connectivity stability, ensuring seamless and secure data transmission
Learning Process Workflow
1. Observation: IRIS continuously collects network parameters such as UAV location,
RIS configurations, and channel interference.
2. Action Selection: The algorithm selects an optimal set of actions for UAV movement,
RIS phase shifts, and power control.
3. Environment Interaction: Actions are executed in the system, and the UAV-RIS
network updates dynamically.
4. Reward Computation: The effectiveness of actions is evaluated based on secrecy rate,
energy efficiency, and network stability.
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5. Policy Update: IRIS refines its strategy through deep reinforcement learning to improve
future decision-making.
Dynamic Policy Integration for Security Adaptation
By continuously evaluating the network’s performance, IRIS dynamically adjusts its decision-
making strategies to respond effectively to changing conditions such as fluctuating channel
quality, UAV movement, or the presence of potential eavesdroppers. This intelligent feedback
loop ensures that the system maintains robust security and communication efficiency even
under unpredictable environments. The policy integration mechanism is governed by:

at = a(t) - atvalue + (1 — a(t)) - atpolicy (20)

where:
o atvalue represents security-driven decisions derived from value-based analysis.
e atpolicy is determined through real-time policy learning, ensuring flexibility in
execution.
e o(t) is an adaptive weighting factor that dynamically selects the best-performing

strategy.
The weighting factor is updated based on real-time performance metrics:
a(t) = Pvalue(t)/(Ppolicy(t)Pvalue(t)) (21)

where:

o Pvalue(t) Ppolicy(t) represent security impact scores for different strategies.

e This mechanism ensures IRIS adapts to the most effective decision-making approach
at each time step, enhancing secrecy rate optimization while maintaining efficient
exploration.

Security-Oriented Reward Engineering
To ensure IRIS prioritizes secrecy rate enhancement, an adaptive reward function is

formulated:

R(St, At) = n - SecrecyRate(St, At) + yt - TimeFactor(t) + 8t - ExplorationBonus(t)
(22)

where:

e SecrecyRate (St,At) measures the increase in secrecy rate at time t.
o TimeFactor (t) encourages fast convergence by penalizing delayed optimization.
o Exploration Bonus(t) rewards early-stage exploration to prevent the model from getting
stuck in suboptimal solutions.
e 1, Yt, Ot are weighting parameters that balance different learning objectives.
Secrecy Rate Calculation
Secrecy rate is a key metric in physical layer security and is given by:

SecrecyRate = max{0,log2(1 + SNRlegitimate) — log2(1 + SNReavesdropper)}

(23)
where:
e SNR legitimate is the Signal-to-Noise Ratio (SNR) at the legitimate receiver.
e SNR eavesdropper is the SNR at the eavesdropper.
Key Insights:
e If SNR eavesdropper is high, the secrecy rate decreases, requiring strategic UAV
positioning and RIS optimization.
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o The goal is to increase the secrecy rate by enhancing SNR legitimate while reducing
SNR eavesdropper.
Optimization Strategy
1. UAV trajectory control: Adjust UAV position to create favourable propagation paths
for legitimate users while avoiding eavesdroppers.
2. RIS phase shifts: Optimize RIS elements to direct signals toward the legitimate receiver
and nullify signals at the eavesdropper's position.
3. Adaptive power allocation: Allocate transmission power dynamically to increase
secrecy rate while reducing energy consumption.
Performance Evaluation and Simulation Results
The IRIS algorithm was tested using MATLAB simulations to evaluate its efficiency in UAV-
assisted RIS networks. It was compared with the Proximal Policy Optimization (PPO) method.
Results showed that IRIS improved the secrecy rate, energy efficiency, and adaptability under
dynamic network conditions. Its optimized UAV path planning and RIS configuration
outperformed PPO in convergence speed and security performance, proving IRIS’s potential
in enhancing secure wireless communication.
Secrecy Rate Improvement
One of the core objectives of IRIS is to maximize the secrecy rate by dynamically adjusting
UAV positioning, RIS phase shifts, and power allocation in the presence of potential
eavesdroppers. The secrecy rate is defined as:
Rs = max{0,log2(1 + SNRlegitimate) — log2(1 + SNReavesdropper)} (24)
where SNRlegitimate and SNReavesdropper represent the received signal-to-noise ratios at the
legitimate receiver and the eavesdropper, respectively.

IRIS vs PPO: Secrecy Rate Comparison
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Fig 9: Graphical representation of secrecy rate comparison
The simulation results demonstrate that IRIS achieves a 29.7% increase in the average secrecy
rate compared to PPO-based optimization. This is attributed to:
e Optimized RIS phase shifts, which focus signal reflections on legitimate users while
minimizing leakage to eavesdroppers.
e Adaptive UAV positioning, which dynamically adjusts the UAV’s trajectory to
maintain secure communication links.
o Intelligent power allocation, which optimizes transmission power to enhance security
while conserving energy.
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The above results confirm that IRIS is highly effective in mitigating eavesdropping threats and
ensuring secure wireless transmissions in UAV-RIS networks.
Convergence Speed
The effectiveness of a reinforcement learning-based approach depends on its ability to quickly
converge to an optimal policy while maintaining stability in decision-making. The convergence
rate was evaluated based on the number of training episodes required for the secrecy rate to
stabilize.
Simulation results reveal that IRIS achieves 28.6% faster convergence compared to PPO,
primarily due to:
e Adaptive exploration-exploitation mechanisms, which prevent excessive exploration
and accelerate policy refinement.
o Enhanced experience replay buffer, which prioritizes critical learning samples,
reducing unnecessary training iterations.
e Hybrid decision-making process, which integrates policy optimization with value-
based learning, improving stability during training.

IRIS vs PPO: Convergence Speed
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Fig 10: Graphical output of Convergence speed
These results confirm that IRIS can rapidly learn an optimal policy while minimizing training
time, making it highly suitable for real-time UAV-RIS network deployments.
Energy Efficiency
Energy efficiency is a critical factor in UAV-assisted networks, as excessive power
consumption can limit UAV endurance and network sustainability. The IRIS framework
introduces intelligent power control mechanisms that reduce energy consumption by 18%,
without compromising security performance.
The energy efficiency improvement is achieved through:
e UAV trajectory optimization, which minimizes unnecessary movements, reducing
propulsion energy expenditure.
o RIS element selection, which dynamically activates only the necessary RIS elements to
optimize signal reflections.
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o Power-aware reward function, which penalizes excessive power allocation while
maintaining secrecy rate objectives.

IRIS vs PPO: Energy Efficiency

50 A ris
PPO

40

30%
30

Energy Reduction (%)

— N
o (=]
\\\
)
\ b
X X
/
/
-t
%
X
2
(=1
/3
e}
)
;
&
/
; -
iz
1
1
1
1
1
1

T 12%

IRIS PPO
Algorithm

Fig 10: Comparison of Energy efficiency
By intelligently balancing power consumption and security requirements, IRIS enables longer
operational lifespans for UAVs and RIS-assisted communication nodes.
Robustness to Network Variability
One of the critical challenges in UAV-RIS networks is their sensitivity to dynamic
environmental changes, such as:
o Fluctuating wireless channels
o Eavesdropper mobility
o Interference from external networks
e Multiple UAV and IoT user configurations
IRIS is designed to adapt to varying network conditions by incorporating:
o State-aware reinforcement learning, which dynamically adjusts UAV-RIS
configurations based on real-time environmental feedback.
e Multi-scenario optimization, where IRIS is tested under both static and mobile UAV
deployments.
e Robust trajectory planning, which ensures secure communication even in the presence
of adversarial jamming or interference.
Simulation results show that IRIS maintains stable secrecy performance under different UAV
speeds, eavesdropper positions, and network densities, making it highly resilient for real-world
applications in disaster response, loT, and surveillance.
Secrecy Rate Performance Analysis
The secrecy rate performance curve illustrates the effectiveness of IRIS in optimizing secure
communications over multiple training episodes. The performance is measured as:
SecrecyRatepercentage = min{SecrecyRate x 100,100} (25)
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Secrecy Rate Performance Analysis Over Training Episodes
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Fig 11: Secrecy rate Performance analysis over training episodes

Key observations from the secrecy rate performance analysis:

o IRIS consistently achieves near-optimal secrecy rates over training episodes.

e Performance stability is reached faster due to the hybrid learning strategy.

o Even under varying interference levels, IRIS maintains a high secrecy rate, validating

its robustness.

The secrecy rate curve demonstrates that IRIS effectively mitigates eavesdropping risks and
outperforms PPO in achieving a stable and higher secrecy rate over time.
Comparative Analysis with PPO
The updated comparison reflects the improved PPO performance while maintaining IRIS’s
superior efficiency.

Metric IRIS PPO Improvement
Secrecy Rate 65.21% 50.25% 29.7%
Convergence Speed 150 episodes 210 episodes 28.6% faster
Energy Efficiency 30% reduction 12% reduction 18% improvement
Robustness High Moderate Better adaptability

Tablel: Comparative analysis of IRIS with PPO
Key Takeaways from the Updated Performance Analysis
1. Secrecy Rate: The improved PPO results (50.25%) confirm that PPO is a competitive
reinforcement learning approach, but IRIS still outperforms it by 29.7%, reaching
65.21% secrecy rate.

2. Convergence Speed: IRIS learns faster (150 episodes) compared to PPO, which still
requires 210 episodes for stability.
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3. Energy Efficiency: PPO improves energy consumption (12% reduction), but IRIS
remains more power-efficient with 18% reduction.
4. Robustness: IRIS maintains higher security performance even under dynamic network
conditions, ensuring superior adaptability.

Conclusion
This study introduces IRIS (Intelligent Reconfigurable Integrated Security), a novel framework
developed to improve secrecy rate and communication integrity in UAV-assisted RIS
networks. IRIS uses reinforcement learning to intelligently coordinate UAV flight paths, RIS
phase configurations, and transmission power control. The system dynamically adapts to
evolving network conditions to reduce eavesdropping threats while maintaining energy
efficiency. MATLAB-based simulations validate the superiority of IRIS over standard methods
like PPO, demonstrating improved secrecy performance, energy use, and adaptability. IRIS
shows strong potential for use in critical applications such as disaster recovery, loT
communications, and secure infrastructure monitoring. Looking ahead, the research aims to
scale IRIS for larger UAV networks, integrate edge Al for real-time processing, and enhance
its defences against advanced cyber threats. Through this work, IRIS bridges Al-driven security
with adaptive wireless communication, offering a resilient, autonomous solution for next-
generation UAV networks.
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