

 135

ARCHITECTURAL TRADE-OFFS BETWEEN STATELESS AND STATEFUL
MICROSERVICES IN LARGE-SCALE CLOUD SYSTEMS

Anup Rao

Software Engineer 2, Microsoft, Redmond, WA, USA, ANUP.RAO@microsoft.com
ORCID : 0009-0008-7306-1046

Abstract
Through a controlled experimental review, this study examined the architectural trade-offs of
stateless and stateful microservices in large-scale cloud systems. To enable a fair comparison,
Kubernetes was used to implement parallel installations of both designs on AWS with similar
hardware specs. Three scenarios—normal load, peak load, and failure conditions—were used
to evaluate performance, scalability, fault tolerance, and operational overhead. The findings
showed that, especially in situations with fault injection and high traffic, stateless
microservices produced higher throughput, quicker recovery times, and reduced operational
complexity. On the other hand, stateful microservices performed exceptionally well in terms of
transactional consistency and session retention, albeit at the expense of slower scalability and
more maintenance work. According to the results, a hybrid architectural strategy that combines
externalized state management with stateless service layers may offer large-scale cloud
deployments the best possible balance between data integrity, flexibility, and resilience.
Keywords: Stateless microservices, Stateful microservices, Cloud computing, Scalability, Fault
tolerance, Kubernetes, AWS, Distributed systems, Architectural trade-offs, Hybrid
architecture.

1. INTRODUCTION
Microservices architecture, which offers modularity, scalability, and operational flexibility, has
emerged as a major trend in the design of large-scale cloud systems in recent years. The choice
to implement services as stateless or stateful components was a crucial architectural factor in
this paradigm. The benefits of stateless microservices, which did not save client-specific
information between requests, were evident in their flexibility, fault recovery, and deployment
simplicity. These services are ideal for workloads with varying demand because they may be
horizontally scaled with no coordination overhead. However, they had to rely on external
storage or caching solutions due to their inability to retain persistent state internally, which
could have added complexity to the system and caused network latency.
Conversely, stateful microservices had maintained internal data across requests, enabling rich
session-based interactions, transactional consistency, and complex workflow management.
While this state retention had been essential for applications such as financial processing,
collaborative platforms, and real-time data analytics, it had also introduced challenges in
scaling, recovery, and data synchronization. Stateful services had required more sophisticated
orchestration, persistent storage integration, and replication strategies, making their
management inherently more complex in distributed environments.
The trade-off between stateless and stateful architectures had therefore represented a critical
decision point for system architects, influencing not only performance and scalability but also

International Journal of Innovation Studies 5 (1) (2021)

 136

resilience, operational overhead, and long-term maintainability. While prior research had
explored microservices performance optimization and cloud-native resilience, comparative
empirical studies focusing specifically on the scalability, fault tolerance, and operational
implications of these two architectural patterns in large-scale cloud deployments had been
limited. This study had aimed to address that gap by systematically evaluating the performance,
recovery characteristics, and operational demands of stateless and stateful microservices within
a controlled cloud environment, offering insights to guide future architectural decision-making.

2. LITERATURE REVIEW
Andell (2020) had examined the architectural ramifications of Function-as-a-Service (FaaS)
and serverless computing, highlighting their fundamentally stateless characteristics. According
to the study, serverless designs made it possible for highly scalable execution models and
eliminated the strain of managing infrastructure. However, these functions' lack of persistent
state forced them to rely on external storage systems, which could present latency and
consistency issues. Externalizing state was a crucial design choice for stateless microservices,
where these insights were especially pertinent.
Chowdhury, Salahuddin, Limam, and Boutaba (2019) has offered a thorough examination of
the use of microservices to re-architect Network Function Virtualization (NFV) ecosystems.
The advantages of breaking down monolithic VNFs into smaller, loosely linked components to
improve flexibility and scalability were described in their study. Crucially, when moving to
microservices-based NFV, they found that state management was still a major obstacle,
particularly when it came to preserving data integrity and service continuity across dispersed
network functions. The trade-offs between stateful and stateless microservices in large-scale
systems were directly analogous to this.
Furda, Fidge, Zimmermann, Kelly, and Barros (2017) had looked into moving enterprise
traditional systems to microservices, with a particular emphasis on data consistency,
statefulness, and multitenancy. According to the authors, stateful microservices frequently
added complications in synchronization, scaling, and fault recovery, even while they were
useful for preserving user context and session data. Stateless systems, on the other hand, were
easier to scale and deploy, but they needed strong externalized state methods to manage
ongoing data needs. Their results supported the idea that state management techniques were
essential to the maintainability and performance of microservices.
Kang, Le, and Tao (2016) has looked at cloud infrastructure DevOps procedures in relation to
container-based microservice designs. They have shown that containers allowed for scalability,
isolation, and quick deployment when paired with microservices. Although operational agility
had been their main concern, they also saw that container orchestration tactics were greatly
impacted by the decision between stateful and stateless designs. While stateful services needed
careful orchestration to maintain data integrity during scaling or failure recovery, stateless
services were simpler to duplicate and replace.
Thumala (2020) We discussed how to create extremely resilient cloud infrastructures, with a
focus on methods to guarantee service continuation in the face of adversity. The study made
clear that the architectural decision between stateful and stateless systems frequently
determined resilience. While stateful services are more difficult to recover from, they were
required for some transactional and session-dependent workloads. In contrast, stateless services

International Journal of Innovation Studies 5 (1) (2021)

 137

have been demonstrated to recover from failures more quickly because they rely less on
permanent state.

3. RESEARCH METHODOLOGY
Large-scale cloud systems' quick adoption of microservices architecture has revolutionized
how businesses develop, implement, and grow their applications. In such systems, deciding
whether to construct services as stateless or stateful components was a crucial architectural
choice. Stateless microservices provided advantages including easier deployment, elastic
scalability, and enhanced fault tolerance because they did not store any client-specific data
between requests. Stateful microservices, on the other hand, preserved session or transactional
data between requests, allowing for more functionality but posing problems with data
consistency, fault recovery, and scaling. Performance, dependability, resource usage, and
operational complexity were all significantly impacted by this architectural trade-off. Prior
studies had looked at resilience and performance optimization in microservices, but there
wasn't much practical data comparing stateful versus stateless methods in the same large-scale
cloud environment. By empirically assessing these trade-offs in a regulated cloud-based
environment, this work sought to close this gap.

3.1.Research Design
Two parallel microservices architectures, one stateless and one stateful, were deployed in a
controlled cloud infrastructure under identical settings as part of the study's comparative
experimental research approach. By removing external variable factors, this method had made
it possible to assess and compare performance, scalability, and resilience qualities directly.

3.2.Experimental Environment
Using Kubernetes as the orchestration framework, all experiments were carried out on Amazon
Web Services (AWS). Docker was used to containerize application services in order to
guarantee deployment consistency. A PostgreSQL database was used for service state
maintenance and AWS Elastic Block Store (EBS) for permanent storage in the stateful
configuration. The stateless setup relied on transitory caching rather than any long-term storage
techniques, processing queries completely in-memory. To guarantee fairness in performance
evaluation, the virtual machine characteristics in all contexts were the same.

3.3.Data Collection Methods
Grafana for real-time visualization and Prometheus for system metrics were used to gather
performance statistics. Throughout the testing process, throughput, response times, CPU
utilization, and memory use were all continuously tracked. Failures had been purposefully
introduced using Chaos Monkey to simulate node crashes, network outages, and forced restarts
in order to evaluate fault tolerance. Using Apache JMeter, scalability testing was carried out by
gradually increasing workloads from 500 to 50,000 concurrent users. Additionally, throughout
a 30-day evaluation period, deployment durations, configuration modifications, and debugging
activities were tracked in order to quantify operational overhead.

3.4.Test Scenarios
For both architectures, three different test scenarios had been run. A Normal Load Scenario
with 1,000 concurrent users and no fault injections was the first. In order to assess scaling
behavior, the second was a Peak Load Scenario that replicated traffic spikes up to 50,000
concurrent users. The third was a Failure Scenario, which evaluated recovery time and
resilience by randomly terminating nodes and injecting lag during moderate workloads.

International Journal of Innovation Studies 5 (1) (2021)

 138

3.5.Data Analysis
To find important distinctions between the two systems, collected data was processed and
statistically examined. Paired t-tests were used to assess quantitative performance outcomes
and ascertain whether differences in latency, throughput, and resource use were statistically
significant. To find reoccurring trends and problems, theme analysis was used to examine
qualitative data from operational overhead observations. For clarity, the results were displayed
using tables and comparative charts.

3.6.Ethical Considerations
Since there were no human subjects in the study, ethical concerns were reduced. However, in
order to guarantee adherence to organizational regulations and financial limitations, all cloud
resources had been made available through institutional accounts. To avoid inadvertently
affecting production systems, testing has been limited to isolated areas.

4. RESULTS AND DISCUSSION
In large-scale cloud environments, the experimental evaluation's findings demonstrated clear
distinctions between stateless and stateful microservices with regard to scalability, fault
tolerance, operational overhead, and resource consumption. Stateful microservices
demonstrated advantages in managing session-based workloads and preserving transactional
consistency, while stateless microservices consistently achieved higher throughput and faster
recovery from failures, according to data gathered from the controlled AWS Kubernetes
deployments. The three predetermined test scenarios' complete results, backed by statistical
analysis and visual data visualization, are presented in the ensuing subsections.

4.1.Performance Under Normal Load
The stateless design demonstrated improved average throughput, handling about 8.2% more
requests per second than the stateful setup under typical load conditions (1,000 concurrent
users, no failure injections). Due to the lack of persistent storage operations, stateless services
have continuously had reduced average response times.

Table 1: Performance Metrics – Normal Load Scenario
Metric Stateless

Microservices
Stateful
Microservices

Difference
(%)

Throughput (req/sec) 12,450 11,500 +8.2
Average Response Time
(ms)

95 112 -15.2

CPU Utilization (%) 62 66 -6.0
Memory Utilization (%) 48 55 -12.7

Since stateless services avoided the latency caused by database interactions, these outcomes
were in line with predictions. Nonetheless, under continuous, moderate load, the performance
difference was not significant, indicating that both topologies were feasible.

International Journal of Innovation Studies 5 (1) (2021)

 139

4.2.Scalability Under Peak Load
The stateless version showed noticeably improved elasticity during the peak load scenario
(50,000 concurrent users), scalable horizontally with little increase in latency. During traffic
spikes, the stateful design, which was limited by persistent storage I/O, had a 37% higher
average response time and occasionally encountered queue delays.

Table 2: Scalability Metrics – Peak Load Scenario
Metric Stateless

Microservices
Stateful
Microservices

Difference
(%)

Throughput (req/sec) 48,200 42,700 +12.9
Average Response Time
(ms)

155 212 -37.0

Horizontal Scaling Time
(s)

35 51 -31.3

Error Rate (%) 0.4 1.2 -66.7

Stateless services were better suited for workloads with erratic traffic patterns, according to the
findings. Because there was no data migration or state synchronization during container
replication, the scaling times were faster.

4.3.Resilience and Fault Recovery
Because the stateless design may restart services without state restoration, it recovered 42%
faster on average in failure scenarios with injected node terminations and network latency
spikes. Stateful microservices reduced data loss in transactional operations by preserving
ongoing sessions, despite their delayed recovery time.

Table 3: Fault Tolerance Metrics – Failure Scenario
Metric Stateless

Microservices
Stateful
Microservices

Difference
(%)

Mean Time to Recovery
(MTTR, s)

28 48 -41.7

Data Loss Incidents 0 0 N/A
Session Preservation (%) 0 100 N/A
Post-Recovery Error Rate (%) 0.6 0.9 -33.3

These findings highlighted the trade-off: stateless services excelled in recovery speed, whereas
stateful services offered continuity for long-lived sessions.

4.4.Operational Overhead
During the 30-day study period, operational monitoring revealed that stateless installations
needed 27% fewer maintenance work. The lack of state management made tasks like
scalability, upgrades, and container restarts easier. The stateful architecture, on the other hand,
required careful control of volume, replication consistency, and database migrations.

Table 4: Operational Overhead Summary
Parameter Stateless

Microservices
Stateful
Microservices

Difference
(%)

Avg. Deployment Time (min) 4.8 7.1 -32.4

International Journal of Innovation Studies 5 (1) (2021)

 140

Avg. Debugging Time per
Issue (min)

18.2 24.7 -26.3

Maintenance Incidents 6 9 -33.3
These results reinforced the perception that stateless architectures reduced day-to-day
operational complexity, making them favorable for rapidly evolving environments.
Discussion
According to the study's findings, stateless microservices are perfect for highly elastic and
fault-tolerant systems because they offer better scalability, quicker recovery, and fewer
operational overhead. They did not, however, have built-in support for complicated
transactional workflows or client sessions without the need of additional state management
tools. Stateful microservices, on the other hand, were better at managing persistent, session-
dependent tasks, which made them useful for use cases involving long-running processes,
financial transactions, or real-time collaboration apps.
Under high load and failure scenarios, the performance disparity increased, and stateless
services took advantage of their more straightforward architecture to grow and recover more
quickly. However, these advantages came at the cost of shifting state management to outside
systems, which might have increased architectural complexity in other places.

Practically speaking, the findings indicated that hybrid techniques, in which application
services maintain their statelessness but important state is externalized to specialized data
stores, would provide the optimal balance between scalability and consistency in large-scale
cloud deployments.

5. CONCLUSION
According to the study's findings, stateless architectures worked better for large-scale cloud
systems that needed high scalability, quick fault recovery, and lower operating overhead, even
if both stateless and stateful microservices had clear benefits. They continuously produced
easier maintenance procedures, quicker scaling times, and higher throughput under peak loads.
Stateful microservices, however, continued to play a vital role in situations requiring real-time
data continuity, transactional integrity, or session persistence. System architects could attain
the best balanced performance by implementing a hybrid strategy—using stateless services for
elasticity and resilience while assigning crucial state management to specialized, fault-tolerant
data stores—according to the trade-off analysis, which showed that no single approach was
consistently optimal.

REFERENCES

1. O. Andell, Architectural Implications of Serverless and Function-as-a-Service. 2020.
2. S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, “Re-architecting NFV

ecosystem with microservices: State of the art and research challenges,” IEEE
Network, vol. 33, no. 3, pp. 168–176, 2019.

3. A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, “Migrating enterprise
legacy source code to microservices: On multitenancy, statefulness, and data
consistency,” IEEE Software, vol. 35, no. 3, pp. 63–72, 2017.

International Journal of Innovation Studies 5 (1) (2021)

 141

4. H. Kang, M. Le, and S. Tao, “Container and microservice driven design for cloud
infrastructure devops,” in Proc. 2016 IEEE Int. Conf. on Cloud Engineering (IC2E),
Apr. 2016, pp. 202–211.

5. S. Thumala, “Building highly resilient architectures in the cloud,” Nanotechnology
Perceptions, vol. 16, no. 2, 2020.

6. A. Pekkala, Migrating a Web Application to Serverless Architecture. 2019.
7. A. Singhvi, S. Banerjee, Y. Harchol, A. Akella, M. Peek, and P. Rydin, “Granular

computing and network intensive applications: Friends or foes?,” in Proc. 16th ACM
Workshop on Hot Topics in Networks, Nov. 2017, pp. 157–163.

8. P. García-López, M. Sánchez-Artigas, S. Shillaker, P. Pietzuch, D. Breitgand, G. Vernik,
… and A. J. Ferrer, “Servermix: Tradeoffs and challenges of serverless data analytics,”
arXiv preprint arXiv:1907.11465, 2019.

9. G. Sayfan, Mastering Kubernetes: Level up your container orchestration skills with
Kubernetes to build, run, secure, and observe large-scale distributed apps. Packt
Publishing Ltd., 2020.

10. I. S. Ayebo, “Comparative analysis of serverless and traditional cloud architectures,”
ResearchGate, Sep. 2017.

11. G. Sayfan, Mastering Kubernetes: Master the art of container management by using
the power of Kubernetes. Packt Publishing Ltd., 2018.

12. R. T. J. Bolscher, Leveraging Serverless Cloud Computing Architectures: Developing a
Serverless Architecture Design Framework Based on Best Practices Utilizing the
Potential Benefits of Serverless Computing, M.S. thesis, Univ. of Twente, 2019.

13. D. Fireman, J. Brunet, R. Lopes, D. Quaresma, and T. E. Pereira, “Improving tail
latency of stateful cloud services via GC control and load shedding,” in Proc. 2018
IEEE Int. Conf. on Cloud Computing Technology and Science (CloudCom), Dec. 2018,
pp. 121–128.

14. Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud computing:
State of the art and research challenges,” IEEE Transactions on Services Computing,
vol. 11, no. 2, pp. 430–447, 2017.

15. A. Sarkar and A. Shah, Learning AWS: Design, Build, and Deploy Responsive
Applications Using AWS Cloud Components. Packt Publishing Ltd., 2018.

