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ABSTRACT: A variety of devices make up the Internet of Things (IoT). Because of the large 
number of attack routes and the constant growth of viruses, botnet detection (BND) is getting 
more and more difficult. Because of the complexity and diversity of attacks, conventional 
detection methods that rely solely on a single Machine Learning (ML) technique could not be 
completely effective. The Ensemble (DL) Deep Learning Model (EDLM) is presented in this 
study. Divergence Weight (LSTM) Long Short-Term Memory (DWLSTM), Levy Weight (LW) 
Bi-Directional Gated Recurrent Unit (LWBi-GRU), and CDBN are some of the models that 
are combined to produce the findings of this EDL. To choose the most relevant features from 
the dataset, the Inertia Weight Mother Optimisation Algorithm (IWMOA) is presented. The 
data sequences are processed in both forward (F) and backward (B) directions by the 
DWLSTM classifier. An update gate (UG) and a reset gate (RG) process LWBi-GRU in both 
directions (F and B). This classifier's capacity to analyse information from both sides allows it 
to interpret some inputs effectively. The Conditional Gaussian-Bernoulli Restricted Boltzmann 
Machine (CGBRBM) for botnet attack detection (BN AD) is a component of the Conditional 
Deep Belief Network (CDBN). Here, the ensemble averaging (EA) method (EAM) is utilized 
for the purpose of integrating benefit of many classifiers. The diversity of samples from 
multiple sources are detected by the potential of the ensemble model (EM) via averaging the 
predictions of various models. From the Kaggle and the University of California, Irvine (UCI), 
the Bot-IoT and N-BaIoT datasets are used, and it may simulate attack scenarios. In the IoT 
datasets, the testing data was used to assess the DL models, and the metrics like precision (P), 
recall (R), F1-score, and accuracy (ACC) were used for this evaluation.  
INDEX TERMS: Cybersecurity, botnet detection (BND), deep learning (DL), Ensemble DL 
Model (EDLM), Levy Weight Bi-Directional Gated Recurrent Unit (LWBi-GRU), Conditional 
Deep Belief Network (CDBN), and Internet of Things (IoT). 
 
1. INTRODUCTION  
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The introduction of the IoT offers novel advancements to many sectors. The unprecedented 
levels of simplicity and connectivity was also offered by this IoT. The global connectivity of 
the Botnet attacks (BNA) made this IoT backgrounds suspectible to many risks in security. The 
Botnet is defined as a system of infected gadgets that are in control of the suspicious users. 
This Botnets thus impacts the integrity and privacy of IoT deployments. So, IoT background 
has major risks because of this BNA [1]–[2]. The cyberattacks against vital structures are 
executed by the botnet [3]. For securing sensitive data in IoT backgrounds, Real-time (RT) 
detection and mitigation of botnet activity is crucial. The entire network is continuously 
monitored for detecting any anomalies, and it was facilitated by the Network (IDS) Intrusion 
Detection Systems (NIDS) via aggregating network data from every host [4]. The 
IoT environment has heterogeneous devices having many types, producers, and structures [5]. 
In the network of several host features, it is complicated to detect anomalies in a heterogeneous 
IoT device, because these heterogeneous IoT device contains many traffic patterns.  
The function of the IoT devices are then limited, when installing conventional security 
software.  For the purpose of identifying and classifying harmful traffic, the study that 
integrates "intelligence" into security systems and using Artificial Intelligence (AI) methods 
are wide-spreading. Then, the AI-driven IDS have the potential in detecting malicious patterns, 
and it also adapts to various attack methods. Large amounts of network traffic (NT) may be 
automatically analysed by AI-driven IDS.  
The ML method is a kind of the AI. This ML has become an effective method for IoT intrusion 
detection (ID) [6]. Models that classify the normal and malicious network behavior has been 
created by the potential of ML method, and it can be done by ML in learning past data, and 
obtaining relevant data. Regardless of its benefits, IoT ID also have several disadvantages that 
needs to resolve. Among the main obstacles for resolving are the absence of labelled training 
data, the requirement for RT processing and low latency, and the interpretability of intricate AI 
models. AI models must also be continuously adjusted to new attack vectors and changing 
network topologies because of the dynamic nature of IoT backgrounds. 
 
However, there are still significant issues that need to be solved, such as prompt detection, RT 
monitoring, and attack adaptation. In training and post-deployment, classical machine learning 
algorithms use signatures of known malware, which is the primary reason for this. 
Preprocessing data before feeding it could cause the detection model's quality to deteriorate. 
Finding the ideal subset of features, often known as feature selection (FS), is actuality a NP-
complete problem. Consequently, for classification procedure, the choice of pertinent feature 
subset is obtained by the application of optimisation techniques. By identifying the features 
that are most pertinent to the classification procedure, FS is used to decrease the dataset's 
dimensionality. 
The computational resources and time needed for BND are reduced when the feature set size 
is reduced. Additionally, the impact of superfluous features on the detection process may be 
avoided. Because of its ease of use and adaptability, meta heuristics (MH) algorithms (MHA) 
are widely used for a variety of optimisation problems. As a result, the BND domain has 
employed MH optimisation techniques for various objectives. The global search (GS) 
capabilities and applicability for the FS process of nature-inspired optimisation algorithms 
(NIOA) are particularly well-known.To optimise FS for BND, some studies employed 
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algorithms based on swarm intelligence (SI) [8]. To address the complex issues, DL techniques 
are presented for their generic deep layer architecture [9]. To gain inspiration for using DL on 
(AD) attack detection, a number of literature evaluations have been carried out [10–12]. 
By merging the diversity of the training models, Subset training is produced by ensemble 
learning (EL). To improve result prediction, this EL will generate a subset classifier. By 
analysing data with varied behaviour in EL, NIDS can identify more general patterns of assault 
in IoT networks with diverse gadget [13–15]. Training and testing the created DL models and 
their ensemble model is the primary goal of this paper. With a lower (ER) error rate and a higher 
detection ACC, this study seeks to achieve optimal performance. EDLM that aggregates the 
outcomes by merging multiple models, such as CDBN, LWBi-GRU, and DWLSTM. The 
accurate outcomes are attained by EA, via averaging its predictions. In IoT datasets, the 
following metrics can be used for the purpose of determining the classifier efficiency, those 
metrics are P, R, F1-score, and ACC. 
2. LITERATURE REVIEW  
To identify the subsets of the most pertinent features for the detection procedure, Baker and 
Samarneh [16] suggested an optimisation technique. In order to detect IoT botnets using the N-
BaIoT, this study used the efficacy of Equilibrium Optimisation (EO), Battle Royale 
Optimisation (BRO), and Adaptive Equilibrium Optimisation (AEO) for FS. 3 classifiers: K 
Nearest Neighbour (KNN), Random Forest (RF), and Gaussian Naive Bayes (GNB) are used 
to assess the efficiency of the chosen features. True Positive (TP) Rate (TPR), False Positive 
(FP) Rate (FPR), sensitivity (S), specificity (SP), feature count, ACC, and time are among the 
metrics taken into account. By runtime, count of FS, and ACC, the outcomes demonstrate that 
EO and AEO outperform existing work on the same dataset. 
For selecting the most pertinent attributes, a new FS method based on a hybrid filter and 
wrapper selection called Fisher Grasshopper Optimisation algorithm (FGOA) is introduced by 
Taher et al. [17]. After ranking the attributes using the new approach combined with clustering, 
the top-ranked features are minimised by using the GOA. Botnet detection is achieved using 
the Improved Harris Hawks Optimisation Algorithm (IHHO), which chooses and modifies the 
hyper parameters (HP) of the neural networks (NN). The GS procedure is improved for optimal 
solutions by adding three improvements to HHO. A chaotic map function (CMF) is used for 
initialisation for resolving the problem of population diversity. A novel nonlinear (NL) is added 
to the hawks' escape energy in order to avoid local minima and enhance the exploration-
exploitation (E-E) balance. Additionally, Opposite-Based Learning (ROBL) and a new elite 
operator, Refraction principle, are used to improve the exploitation phase of HHO. The KNN 
and NN classifiers are validated using the N-BaIoT dataset. 
To generate a training model (TM) from every diverse IoT device, a Deep NN (DNN) was 
suggested by Wardana et al. [18]. The traffic is then estimated using every TM from every 
different IoT gadgets. Using the EAM, the prediction results from all TM are averaged to 
determine the ultimate outcome. The suggested model is assessed by using the N-BaIoT 
dataset. By using a mix of DNN and EA for anomaly detection, NIDS is best able to detect 
BNA patterns in diverse IoT devices. EA DNN can BN AD in heterogeneous IoT gadgets, 
according to experimental findings. 
In order to detect IoT botnet attacks, the Deep (AE) Autoencoder (DAE) model was suggested 
by Meidan et al. [19]. From benign traffic data, this DAE derives statistical features. The four 
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main processes in this procedure are anomaly detector training, data collection (DC), feature 
extraction (FE), and continuous monitoring. Anomalies found when applied to fresh 
(potentially hacked) data from an IoT device could be a sign that botnet attacks have 
compromised the device. After being compressed, an AE is trained to reconstruct its inputs. 
and the AE is a NN. The network has the ability to learn the important ideas and the 
relationships between its input features due to the compression. 
Using long short-term memory AE (LAE) encoding, using large-scale IoT NT data, Reducing 
the dimensionality of features was recommended by Popoola et al. [20]. Deep Bidirectional 
LSTM (Bi-LSTM) is used to assess the long-term correlated changes in the low-dimensional 
feature set produced by LAE in order to accurately categorise NT samples.The BoT-IoT dataset 
is used to confirm the efficacy of the hybrid DL technique. LAE significantly reduced the 
amount of memory required for large-scale NT data storage and outperformed state-of-the-art 
(SOTA) feature (DR) dimensionality reduction approaches. The deep Bi-LSTM model exhibits 
resilience against model underfitting and overfitting in spite of the notable decrease in feature 
size. In situations involving binary class (BC) and multiclass (MC) classification, it also 
demonstrates strong generalisation abilities. 
A novel IDS for IoT systems was introduced by Ge et al. [21] utilising a DL method. IoT traces 
and real attack traffic, such as Denial of Service (DoS), Distributed DoS (DDoS), 
reconnaissance, and information theft attacks, are included in this SOTA IoT dataset. Feed-
Forward NN (FFNN) algorithms with embedding layers are utilised for MC classification, 
whereas header field information in each packets is employed as generic features to capture 
general network features. To construct a BC, high-dimensional (HD) categorical features are 
encoded using the transfer learning (TL) concept.The results of the examination of the 
suggested method show that both the BC and MC classifiers have the highest classification 
ACC. 
 
Considering a DNN for an IoT network, Ahmad et al. [22] suggested an effective anomaly 
detection method utilising Mutual Information (MI). When performing various DL models, 
such as DNN, Convolutional NN (CNN), Recurrent NN (RNN), Gated Recurrent Unit (GRU), 
and LSTM, the IoT-Botnet 2020 is taken into account. Metrics like P, R, f1-score, ACC, False 
Acceptance Rate (FAR), True Negative Rate (TNR), and False Negative Rate (FNR) are used 
to compare experimental outcomes to the widely used DL models. 
An EL model for BN AD in IoT networks (ELBA-IoT) has been suggested by Abu Al-Haija et 
al. [23]. It uses EL for AD NT from hacked IoT devices and keeps an eye on the behavioural 
features of IoT networks. Furthermore, the evaluation of 3 distinct ML techniques that are part 
of the decision tree (DT) methodology family (AdaBoosted, RUSBoosted, and bagged) is 
characterised by the IoT-based botnet detection strategy. The N-BaIoT-2021 dataset, that 
includes records of both regular IoT NT and botnet attack (BNA) traffic of compromised IoT 
devices, is used to assess the ELBA-IoT. For BNA launched from affected IoT devices, the 
ELBA-IoT model has a high (DR) detection rate and a low inference overhead (40 µ-seconds). 
A hybrid DL (CNN-LSTM) approach has been suggested by Alkahtani and Aldhyani [24] to 
detect BNA on 9 commercial IoT devices. An IoT environment is used to apply the DL model 
to BN AD. By expediting the procedure of disconnecting the majority of IoT devices from the 
Internet, early detection (ED) of DDoS attacks can aid network security (NS). This will assist 
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in preventing and stopping the acceleration of botnet attacks. An actual N-BaIoT database 
extracted from a real-world structure. It is employed for in-depth research.With the best ACC, 
the CNN-LSTM model has the ability for detecting BNA from a variety of IoT devices. 
To stop and identify IoT BNA, a two-fold ML strategy was suggested by Hussain et al., [25]. 
For scanning the AD (ResNetScan-1) model, a ResNet-18 is created in the first fold. The BNA 
was no effectively prevented by the previous scanning detection model. Then, for detecting the 
DDoS attacks, the second ResNet-18 model (ResNetDDoS-1 model) is used. Then, the 
effectiveness of the ResNetScan-1 and ResNetDDoS-1 models were determined via some 
simulations, and this simulation was executed with the support of the scan and DDoS traffic 
samples from 3 widely accessible databases. After training the ResNet-18 model on these 
datasets, the ResNetScan and ResNetDDoS models that were produced were stored. When 
compared to other trained models, the experimental findings demonstrate how effectively the 
recommended technique can stop and identify BNA. 
3. PROPOSED METHODOLOGY  
In this study, EDLM is introduced which combine the results by combining several models like 
DWLSTM, LWBi-GRU, and CDBN. DWLSTM data sequences are processed in two 
directions (F and B). LWBi-GRU is performed with an UG and the RG in both directions. The 
CDBN is composed of the CGBRBM for BN AD.  Ensemble averaging is introduced to merge 
the strengths of individual classifiers. Bot-IoT and N-BaIoT datasets are used for performance 
validation of the suggested method and current methods.  ACC, P, R, and F1-score were 
employed for determining the efficacy of the suggested method. The recommended scheme's 
overall process is depicted in Figure 1. 
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FIGURE 1. FLOWCHART OF SUGGESTED IWHO AND DWLSTM STRUCTURE 
3.1. IoT Botnet  
A packet tracer (https://www.netacad.com/courses/packet-tracer accessed on 29 April 2024), 
an open source tool for IoT simulation, is used to construct an IoT botnet. To control the IoT 
nodes, a Python script was used to construct the C&C server. To configure the setup, a Python 
script module called Scapy was used. An IoT network is subjected to 4 attack types as a result 
of the attack simulation. 

 
3.2. BoT-IoT AND N-BAIoT DATABASE  
For cyber security study, the Bot-IoT dataset is openly and freely accessible [3]. It includes 
four BNA scenarios: DoS, DDoS, reconnaissance, and information theft as well as benign IoT 
NT. The N-BaIoT dataset is also publicly available and free for use in cyber security research 
[19]. Two doorbells, a thermostat, a baby monitor, four security cameras, and a webcam were 
all part of the IoT testbed that produced this dataset. Six redundant features were found and 
eliminated from the Bot-IoT dataset in this investigation. An NT sample is represented by a 
total of 37 features. Min-max normalisation (MMN) was used to re-scale the values of these 
features among 0 and 1 in order to effectively train a NN model. 
3.3. IWMOA BASED FS  
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IWMOA is a population-based MHA that uses an iterative technique to solve FS. The algorithm 
population is made up of vectors in the AD space that represent candidate feature-selected 
solutions. Three periods of relation among a mother and her children: education, guidance, and 
upbringing will be simulated by IWMOA. Unquestionably, the home is the primary academic 
institution in society, and mothers are crucial to a child's upbringing. Children inherit their 
mother's skills and life lessons, and they grow in their own abilities by following her guidance. 
The three stages of (i) education, (ii) advice, and (iii) Upbringing are among the most important 
forms of relationships among a mother and her children. 

 
Stage 1: Education (exploration stage): Children's education serves as the model for 
population update education in the suggested IWMOA strategy. It aims to enhance GS and 
exploration skills by drastically changing the feature positions of the population members 
(PM). The MOA design models the mother's training of her children to resemble the 
educational stage, as she is considered the best feature of the population. 
Stage 2: advice (exploration stage): By significantly altering the PM' locations, the advice 
phase increases the IWMOA capability in GS and exploration. According to the IWMOA 
design, each PM's feature position relative to other PM whose ACC values are higher than 
theirs is seen as abnormal behaviour that is to be avoided. The mother's GS and Local Search 
(LS) capacity are adjusted using the inertia weight, which also modifies the influence of 
previous outcomes. 
Stage 3: upbringing (exploitation stage): In numerous ways, the children's skill are enhanced 
by mother's contribution throughout the educational experience. By making little adjustments 
to the PM' feature positions, the parenting increases LS's capacity and facilitates exploitation 
throughout the IWMOA phase. 
The population's search control is utilised to identify the best feature solution, and every 
population member establishes the values of ACC according to its location in the FS search 
space (SS) [26]. The classification accuracies best and worst values can be used to determine 
which PM are the best and worst. The optimal feature solution is updated and saved 
continuously during the process. Once the method is fully developed, IWMOA gives the 
problem's optimal feature solution [26]. 

3.4.ENSEMBLE DEEP LEARNING MODEL (EDLM) 
The main advantages of an EL system and a number of DL techniques are intended to be 
efficiently combined by EDLM. Performance gains over individual techniques have been 
demonstrated by DL architectures such as DWLSTM, LWBi-GRU, and CDBN. Even though 
using separate techniques can improve prediction performance, EDLM has a significant 
impact. In contrast, base learners (BL) such as DWLSTM, LWBi-GRU, and CDBN are created 
concurrently in the parallel ensemble technique [27, 28]. As, Figure 2 illustrates, every piece 
of data in the BL is created separately. The fundamental benefit of this method is that it takes 
advantage of the independence between BL. The process of combining the outputs of the 
baseline classifiers into a single output is known as output fusion. The fusion techniques can 
be applied to parallel or sequential baseline classifiers, as well as independent or dependent 
data samples. 
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FIGURE 2. EDLM 
3.4.1. DWLSTM CLASSIFIER 
The DWLSTM network is one specific kind of RNN structure.When it comes to learning long-
term dependencies, DWLSTM outperforms the conventional RNN [29–30]. Through the use 
of specially designed gates and memory cells, over time, LSTM networks can choose preserve 
or discard information due to their deep structure. 
 (Figure 3). 

 

 
FIGURE 3. STRUCTURE OF DWLSTM  
The cell state (C!), or LSTM, allows data to move along it unaltered. Three gates control the 
C!, which allows information to pass through optionally. The first gate, sometimes referred to 
as the forget gate (FG).  FG determines which features of the cell state vector C!"# will be 
forgotten. 
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Here, the forgetting degree is indicated by the sigmoid layer (SL)'s output vector, f!, which has 
values among 0 and 1. The set of trainable parameters for the FG is defined by W$and b$. The 
input gate then selects the value that has to be changed. 

 
 

i! = σ(W%. [h!"#, x!] + b%) (2) 
Here, the value of the output variable that ranges from 0 to 1 is denoted as i!. Trainable 
parameters are W%and b%. The current input (x!) and the last hidden state, h!"#, are then used to 
calculate a possible vector of cell state. 

 
C1 = tanh(W& ∙ [h!"#, x!] + b&) (3) 

The hyperbolic tangent is called tanh. The values of the vector C1  range from 0 to 1.The 
trainable parameters are W&and b&. The previous cell state C!"# can then be updated by 
element-wise multiplication to the new C!. 

 
C! = f!∗ C!"# + i! ∗ C1! (4) 

In the end, the output gate determines which an SL should output. 
 

o! = σ(W'[h!"#, x!] + b') (5) 
Here, a vector that has values between 0 and 1 is denoted as o!. The output gate's trainable 
parameters are W'and b'. After that, equations (5–6) are combined to determine the new hidden 
state h!. 

 
h! = o! ∗ tanh(C!) (6) 

Kullback Leibler (KL) divergence has been used to calculate the classifier's weight values. A 
statistical distance that quantifies the degree to which a probability distribution class Q differs 
from a true probability distribution P is called D()(P ∥ Q). 

 

D()(P||Q) = = P(w) log A
P(w)
Q(w)B

*∈,

 (7) 

It frequently has high HP, whose value is predetermined before the learning process starts. The 
loss function (LF) for HP optimisation in this study is Mean Square Error (MSE). It is the 
procedure that produces a model that minimises the LF by identifying a tuple of HP. 
3.4.2. LWBi-GRU 
For BN AD, the Bi-GRU model has UG and RG. Because Bi-GRU lacks a forget gate, it has 
fewer constraints, making it computationally economical, less likely to overfit, and an effective 
option for datasets of a smaller size. The update gate (d-.) is used in the Bi-GRU model in 
place of the input gate and FG of the LSTM network. In order to determine which historical 
data should be passed along with the future data, the (d-.)	aids the model. The Bi-GRU model's 
vanishing-gradient problem (VGP) is lessened by this procedure. Equation (8) provides a 
mathematical specification for the [31, 32]. 

 
d-. = σ(LW/ × [h-."#, f-.] + b/) (8) 
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Here,  LW/ is the representation of the levy weight matrix. The symbol b/  represents the bias 
matrix. The input matrix (FS) at time step (TS) is denoted by  f-.. The sigmoid (AF) activation 
function is represented by the symbol σ. h-."# represents the hidden state at the preceding time 
step (TS−1). The historical (TS) time-series data is controlled in the Bi-GRU model by means 
of the reset gate (p-.). In the hidden state, p-.	is in charge of the network's short-term memory. 
Equation (9), which provides a numerical expression for p-., 

 
p-. = σHLW0 × [h-."#, f-.] + b0I (9) 

Here, b0and LW0 stand for the bias matrix and the LW matrix of the p-.. Next, equation (10), 
which specifies the hidden state candidate (h1-.), 

 
h1-. = tanh(LW1 × [h-."#⨀p-., f-.] + b1) (10) 

Here, tanh stands for the tangent AF. ⊙ is used to represent the dot multiplication operation. 
The symbols as b1and LW1	stand for the bias matrix and LW matrix of the memory cell state, 
respectively. The influence of the prior weight on the present weight is managed by the levy 
weight. Using equation (11) and the Mantegna method with step size s, Levy weight is 
produced, 

 

s =
u

|v|
#
2
 (11) 

The equations (12–13) are used to extract u and v from normal distributions. 
u~N(0, σ3), v = N(0, σ43) (12) 

σ =

⎝

⎛
Γ(1 + β) × sin Aπβ2 B

Γ A1 + β2 B × β × 25
2"#
3 6 	⎠

⎞

#
2

, σ4 = 1 

(13) 

Therefore, equation (14) can be used to illustrate a basic strategy. 

Levy(w) = 0.01 ×
u × σ

|v|
#
2

 (14) 

Equation (15) illustrates the linear interpolation of h1-., and h-."# to get the output (h-.). 
 

h-. = (1 − d-.) ⊙ h-."# + d-.⊙h1-. (15) 
Figure 3 mentions the LWBi-GRU model architecture. Feature information is extracted 
forward in the Bi-GRU model. The backward historical data is then automatically rejected by 
the Bi-GRU model. Because LWBi-GRU can simultaneously investigate information from 
both directions, it can process multiple inputs more effectively than conventional frameworks. 
As shown in Figure 4, the suggested framework takes the information among the features from 
the F and B directions. 
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FIGURE 4. STRUCTURE OF THE LWBi-GRU FRAMEWORK 
The forward GRU in the LWBi-GRU model takes information regarding the past from the 
historical data, while the backward GRU does the same for the future. Equation (16) specifies 
the LWBi-GRU model's numerical expression. 

o-. = A(h_⃗ -., h⃖_-.) (15) 

Here, A stands for the output of the B and F directions. Furthermore, h⃖_-. and h_⃗ -. are the 
symbols representing the hidden states of the B and F GRUs. A particular set of parameters is 
used by the Bi-GRU model to maximise its performance. These consist of the Adam optimiser, 
a learning rate, a batch size of 50, a dropout rate of 0.5, 80 neurons, a look-back of 8 time steps, 
and the Mean Square Error (MSE) LF. 

 
3.4.3. CDBN 
In order to identify the attack activity, a CDBN classifier made of the CGBRBM is suggested. 
The suggested CDBN classifier, which is based on CGBRBM, is capable of efficiently learning 
the dataset's features and RT-detecting botnet attacks. CGBRBM uses an attack dataset as its 
input. The correlations between the current and historical input datasets can be captured by the 
CGBRBM. This is an RT method to identify the newly input dataset because, once the CDBN 
framework has been trained, instead of being inputted into the model all at once, the testing 
data will be added progressively. As shown in Figure 5, the CGBRBM unit serves as the initial 
layer in a CDBN-based detector, with N-1 conventional RBMs on top of it. This means that the 
entire CDBN design has N hidden layers. To be clear, the CDBN design is topped with a 
multiple classifier output unit that can determine if the input dataset is an attack sample and 
output the classification label. 



International Journal of Innovation Studies 9 (2) (2025) 

 

 482 

 
FIGURE 5. FRAMEWROK OF CDBN  

PRE-TRAINING PROCEDURE:  To initialise the system attributes, which include 
the offset values of each layer neuron and the link weights among layers, the CDBN classifier's 
pre-training procedure is utilised. Consider an RBM, which has a hidden layer (HL) with n 
hidden units (HU) and a visual layer (VL) with m visible units (VU). The following is a 
definition of a traditional RBM's energy function: 

 

E(v, h) = −==w%7h%v7

8

79#

:

%9#

−=c7v7

8

79#

−=d%h%

:

%9#

 
(16) 

   
Here, the jth element of the VL vector is denoted by v7. The ith sample of the HL vector is 
denoted by h%. In the weight matrix between the VU and HU, w%7 is the ijth element. For the HL 
and VL, define d%and c7 as the ith sample and jth member of the bias vector. Equation (16) uses 
the values of the neighbouring layer units to calculate the activation conditional probability 
distributions (CPD) of HU and VU. 
 
 

⎩
⎪
⎨

⎪
⎧
p(h% = 1|v) = sigmid% +=w%7v7

8

79#

j

pHv7 = 1khI = sigmlc% +=w%7h%

:

%9#

m

 

(17) 

The sigmoid function is denoted by sigm(.). The following updates are made to the weights 
and biases of the traditional RBMs using the Contrastive Divergence (CD) approach [33]: 

n
w%7 = w%7 − αH〈v7h%〉8 − 〈v7h%〉;I
d% = d% − α(〈h%〉8 − 〈h%〉;)
c7 = c7 − αH〈v7〉8 − 〈v7〉;I

 
(18) 

Here, the learning rate is denoted by α. The expectations calculated across the dataset and 
model distributions are 〈. 〉8and 〈. 〉;. 
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FIGURE 6. CONFIGURATION OF CGBRBM FOR CDBN 
The framework of the CGBRBM using one HL and KC1 VL is shown in Figure 6. Observation 
window size is denoted as K. Equation (16) defines the CGBRBM energy function as follows: 

E(v!, … , v!"(, h) = −==
v7
σs73

8

79#

:

%9#

h%w%7 −=d%,!h%

:

%9#

+=
Hv7,! − c7,!I

3

2σs73

8

79#

 
(19) 

Here, the ith sample of the HL is denoted by h% and the jth member of the VL vector by v7. The 
ijth component of the weight matrix (WM) among the HL and VL units is denoted by w%7. The 
standard deviation of the visible vector's jth component is denoted by σs7. The count of VU is m, 
and the count of HU is n. The HL and VL bias vectors are denoted by d and c.  Then, compute 
d! and c! in the following way: 

 

⎩
⎪
⎨

⎪
⎧d! = d +=v!"=B=

(

=9#

c! = d +=v!"=A=

(

=9#

 

(20) 

Here, the kth prior VL vector is denoted by v!"=. The CPD of the HL and VL units can be 
computed using equation (20) below: 

 
 

⎩
⎪
⎨

⎪
⎧
p(h% = 1|v!, … . , v!">) = sigmid%,! +=

w%7v7,!
σs73

8

79#

j

pHv7,! = vkhI = Nlc7,! +=w%7h%

:

%9#

, σs73m

 

(21) 

The CGBRBM structure can be modified by the gradient-based CD technique, and it is given 
below  
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ w%7 = w%7 − αlu

v7,!
σs73
h%v

8

	− u
v7,!
σs73
h%v

;

m

a%7= = a%7= − αlu
v7,!"=
σs73

v%,!v
8

	− u
v7,!"=
σs73

v%,!v
;

m

b%7= = b%7= − αlu
v7,!"=
σs73

h%v
8

	− u
v7,!"=
σs73

h%v
;

m

d% = d% − α(〈h%〉8 	− 〈h%〉;)

c7,! = c7,! − αlu
v7,!
σs73
v
8

	− u
v7,!
σs73
v
;

m

 

(22) 

The WM defined as W, A= and B=, with w%7, a%7=	and	b%7=being the corresponding elements. 
Define the expectations derived from the data and model distributions as 〈. 〉;and 〈. 〉8. After 
pre-training, add a fully connected (FC) output node to the top of the model.The output node 
is constructed as a multiple node with sigmoid AF specified in equation (17) to display the 2 
values denoting the attack and the normal samples. For accomplishing the learnt structure of 
the NN, the given labelled data and the previously indicated procedures are utilized, and with 
the application, the model may be fine-tuned (FT) by back-propagation (BP) supervised 
training [34]. 
 

FT PROCEDURE OF CDBN: The FT approach is employed to modify the features, 
including the weights and biases, following the pre-training phase. The WM and bias vector of 
the hth HL can be updated as follows if the learning rate is defined as η. 

 

w
ΔW1,%,7 = −ηδ1,7p1"#,7

Δd1,7 = −ηδ1,7
 

(23) 

The updated values for the ijth component of the WM and the jth component of the bias vector 
are denoted by ΔW1,%,7 and Δd1,7. The activation probability of the jth component of the (h-1)th 
HL is denoted by p1"#,7. 

 

δ1,7 = p1,7H1 − p1,7I=δ1?#,=W1?#,7,=

@

=9#

 
(24) 

In the (h+1)th HL, M is the number of elements. W1?#,7,= and p1,7represent the activation 
probability of the jth element of the hth HL and the jkth component of the WM of the (h+1)th HL, 
respectively. Equation (25), the output layer's (OL) single-unit weight vector and bias value are 
modified in the following way: 

 

{
ΔW',7 = −ηδ'pA,7
Δd' = −ηδ'

 (25) 

Here, the updated value for the weight vector's jth component is denoted by ΔW',7. The bias's 
updated value is Δd'. The bias's updated value is Δd'. The activation probability of the jth 
component of the final HL, whose index is h=H, is denoted by pA,7. 
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δ' = p'(1 − p')(l' − L) (26) 

The output label’s predicted value and its actual value are represented as l'and L. The single 
output unit's activation probability is denoted by p'. 

 
3.4.4. ENSEMBLE AVERAGING  
By merging the detections of several different models, the EA method can assist in addressing 
the diversity of classifiers. To capture its unique features, each model is trained on a dataset 
from a particular source.By averaging various models' predictions, the EM is able to represent 
the diversity of samples.With this strategy, the EM can decide using several techniques 
depending on dataset variances and trends from various sources. 

yBCD =
1
n=y%

:

%9#

 
(27) 

For numerous TM i, where i	 ∈ {1, 2, . . . , n}, EA is just the average of the detection result y% 
[18]. 
 

 
4. EXPERIMENTS AND DISCUSSION  
This part uses the Bot-IoT and N-BaIoT to replicate the DL approaches. The classifiers were 
executed using the MALABR2020a programming language on a laptop running 64-bit 
Windows 10 OS with an Intel Core i7 2.2 GHz CPU and 32 GB of RAM in order to measure 
the experimental findings. The efficacy of these approaches for BN AD was assessed by 
experiments. 
4.1. DATASETS  

Bot-IoT Dataset: Research on cyber security can use the publicly available Bot-IoT 
dataset. It includes four botnet attack scenarios, as well as harmless IoT NT. Additionally, a 
sliding window of 100 was used to produce new features based on network connection 
transaction flows. There are 3,668,045 mbotnet attack samples and 477 benign IoT NT samples 
in this dataset. To characterise the behaviour of an NT sample, 43 features were taken from a 
network packet [35]. 

 
N-BaIoT Dataset: For cyber security research, a freely accessible N-BaIoT dataset is used. 
Two doorbells, a thermostat, a baby monitor, four security cameras, and a webcam were all part 
of the IoT testbed that produced this dataset. The 115 attributes are obtained from FE for each 
of these 23 features, taking into account five time windows (100, 500, 1.5, 10, and 1 minute). 
115 statistical features that depict the behaviour snapshots of the NT were taken from the 
network packets over a number of temporal windows after these commercial IoT devices were 
attacked with the Mirai and BASHLITE botnets [36]. Benign IoT NT and IoT botnet scenarios, 
including as ACK, Scan, SYN, and UDPP flooding attacks, are included in this dataset. The 
outcomes of this study are evaluated using 1,483,658 IoT BN attack samples and 363,979 
benign IoT NT samples. 
4.2. SIMULATION OUTCOMES 
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The classification outcomes were assessed using the confusion matrix (CM) and a number of 
performance metrics, such as P, R, F1-score, and ACC.The number of TP, True Negative (TN), 
FP, and False Negative (FN) cases were among the metrics used. These metrics are formulated 
below, (in Eqns (28–31)), 

P =
TP

TP + FP (28) 

R =
TP

TP + FP (29) 

F1 − Score =
2 ∗ P ∗ R
P + R  (30) 

ACC =
TP + TN

TP + TN + FP + FN (31) 

 
 

4.3. PERFORMANCE OF DEEP LEARNING METHODS ON  Bot-IoT DATASET 
The class-wise performance of the DL approaches in the four FS methods (Gaussian Weight 
Black Widow Optimisation (GWBWO), Local Search Algorithm-Pigeon-Inspired 
Optimisation (LS-PIO) [38], Multi-Objective Particle Swarm Optimisation (MOPSO) [37], 
and IWMOA) on the Bot-IoT dataset is assessed in this subsection. Table 1, EDLM classifier 
achieved a highest precision of 99.00%, other classifiers such as CNN-LSTM [24], Long Short- 
Deep Recurrent Neural Network (LS-DRNN) [39], DNN, DWLSTM, LWBi-GRU, and CDBN 
gives results of 91.08%, 94.69%, 96.57%, 97.59%, 97.80%, and 98.38% for IWMOA. EDLM 
classifier achieved a highest recall of 98.84%, other classifiers such as CNN-LSTM, LS-
DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN gives results of 88.71%, 92.62%, 95.43%, 
96.65%, 97.27%, and 98.03% for IWMOA. EDLM classifier achieved a highest F1-score of 
98.92%, other classifiers such as CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and 
CDBN gives results of 89.88%, 93.64%, 96.02%, 97.10%, 97.63%, and 98.21% for IWMOA. 
EDLM classifier achieved a highest accuracy of 99.05%, other classifiers such as CNN-LSTM, 
LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN gives results of 89.59%, 92.56%, 
95.32%, 97.25%, 97.74%, and 98.38% for IWMOA. 
TABLE 1.  METRICS COMPARISON OF DL METHODS ON BoT-IoT DATASET 
Methods Precision (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 83.62 88.29 90.83 92.71 93.61 94.48 95.63 
LS-PIO 85.86 90.01 93.03 94.47 95.02 95.85 96.70 
GWBWO 89.12 93.08 94.41 96.52 97.13 97.69 98.33 
IWMOA 91.08 94.69 96.57 97.59 97.80 98.38 99.00 
Methods Recall (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 81.56 85.72 89.18 90.76 91.93 93.12 94.34 
LS-PIO 83.73 87.91 90.92 92.40 93.32 94.35 95.76 
GWBWO 86.72 90.96 93.97 95.16 95.72 96.32 97.37 
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IWMOA 88.71 92.62 95.43 96.65 97.27 98.03 98.84 
Methods F1-Score (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 82.57 86.98 90.00 91.72 92.79 93.80 94.98 
LS-PIO 84.78 88.94 91.96 93.41 94.16 95.09 96.23 
GWBWO 87.90 92.01 94.18 95.84 96.42 97.00 97.85 
IWMOA 89.88 93.64 96.02 97.10 97.63 98.21 98.92 
Methods Accuracy (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 83.22 85.98 89.30 91.04 92.10 93.08 94.04 
LS-PIO 85.08 87.87 91.33 92.81 93.47 94.54 95.72 
GWBWO 87.62 90.94 93.24 95.66 96.43 97.16 98.09 
IWMOA 89.59 92.56 95.32 97.25 97.74 98.38 99.05 

 

 
FIGURE 7.  PRECISION ANALYSIS OF DL METHODS (BoT-IoT) 
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FIGURE 8.  RECALL ANALYSIS OF DL METHODS (BoT-IoT) 

 
FIGURE 9.  F1-SCORE ANALYSIS OF DL METHODS (BoT-IoT) 
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FIGURE 10.  ACCURACY ANALYSIS OF DL METHODS (BoT-IoT) 

Performance metrics of the DL methods in the four FS methods on Bot-IoT dataset are 
illustrated in figures 7-10. The EDLM method has highest results of 99.00%, 98.84%, 98.92%, 
and 99.05% for P, R, f1-score, and ACC. Figure 7, proposed classifier gives highest precision 
of 95.63%, 96.70%, 98.33%, and 99.00% for MOPSO, LS-PIO, GWBWO, and IWMOA. 
IWMOA gives lowest precision of 91.08%, 94.69%, 96.57%, 97.59%, 97.80% and 98.38% for 
CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN. Figure 8, proposed 
classifier gives highest recall of 94.34%, 95.76%, 97.37%, and 98.84% for MOPSO, LS-PIO, 
GWBWO, and IWMOA. IWMOA gives lowest recall of 88.71%, 92.62%, 95.43%, 96.65%, 
97.27%, and 98.03% for CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN. 
Figure 9, proposed classifier gives highest f1-score of 94.98%, 96.23%, 97.85%, and 98.92% 
for MOPSO, LS-PIO, GWBWO, and IWMOA. IWMOA gives lowest f1-score of 89.88%, 
93.64%, 96.02%, 97.10%, 97.63%, and 98.21% for CNN-LSTM, LS-DRNN, DNN, 
DWLSTM, LWBi-GRU, and CDBN. Figure 10, proposed classifier gives highest accuracy of 
94.04%, 95.72%, 98.09%, and 99.05% for MOPSO, LS-PIO, GWBWO, and IWMOA. 
IWMOA gives lowest accuracy of 89.59%, 92.56%, 95.32%, 97.25%, 97.74%, and 98.38% for 
CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN. 
4.4. PERFORMANCE OF DEEP LEARNING METHODS ON  N-BaIoT DATASET  
The DL methods' class-wise performance in the four FS techniques on N-BaIoT was assessed 
in this subsection. According to Table 2, the EDLM model had the maximum precision of 
99.28%. For IWMOA, the results from other classifiers, including CNN-LSTM, LS-DRNN, 
DNN, DWLSTM, LWBi-GRU, and CDBN, were 90.21%, 91.80%, 95.97%, 97.22%, 97.96%, 
and 98.49%. EDLM model achieved a highest recall of 98.51%, other classifiers such as CNN-
LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN gives results of 89.06%, 
91.04%, 94.08%, 95.49%, 96.48%, and 97.55% for IWMOA. EDLM model achieved a highest 
f1-score of 98.89%, other classifiers such as CNN-LSTM, LS-DRNN, DNN, DWLSTM, 
LWBi-GRU, and CDBN gives results of 89.62%, 91.41%, 94.98%, 96.34%, 97.21%, and 
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98.02% for IWMOA. EDLM framewrok attained a highest ACC of 98.84%, other classifiers 
such as CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN gives results of 
90.76%, 92.93%, 95.34%, 96.50%, 97.14%, and 97.96% for IWMOA. 
TABLE 2.  METRICS COMPARISON OF DL METHODS ON N-BaIoT DATASET 
Methods Precision (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 83.83 86.21 87.99 89.56 91.07 92.50 94.08 
LS-PIO 85.87 88.05 90.25 91.86 93.01 94.16 95.47 
GWBWO 88.49 90.31 94.81 95.93 96.90 97.44 98.10 
IWHO 90.21 91.80 95.97 97.22 97.96 98.49 99.28 
Methods Recall (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 83.36 85.57 87.52 89.22 90.34 91.57 92.64 
LS-PIO 85.32 87.55 89.89 90.85 92.03 93.28 94.56 
GWBWO 87.37 89.51 92.65 93.66 94.59 95.62 96.57 
IWHO 89.06 91.04 94.08 95.49 96.48 97.55 98.51 
Methods F1-Score (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 83.58 85.87 87.74 89.38 90.70 92.03 93.35 
LS-PIO 85.59 87.78 90.06 91.34 92.52 93.71 95.02 
GWBWO 87.91 89.89 93.72 94.77 95.73 96.52 97.33 
IWHO 89.62 91.41 94.98 96.34 97.21 98.02 98.89 
Methods Accuracy (%) 

CNN-
LSTM 

LS-
DRNN 

DNN DWLSTM LWBi-
GRU 

CDBN EDLM 

MOPSO 84.26 87.30 89.37 91.16 92.32 93.30 94.47 
LS-PIO 86.48 89.08 91.14 92.48 93.24 94.21 95.56 
GWBWO 88.85 91.15 93.72 94.96 95.77 96.72 97.60 
IWHO 90.76 92.93 95.34 96.50 97.14 97.96 98.84 
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FIGURE 11.  PRECISION ANALYSIS OF DL METHODS (N-BaIoT) 

 
FIGURE 12.  RECALL ANALYSIS OF DL METHODS (N-BaIoT) 
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FIGURE 13.  F1-SCORE ANALYSIS OF DL METHODS (N-BaIoT) 

 
FIGURE 14.  ACCURACY ANALYSIS OF DL METHODS (N-BaIoT) 
The performance metrics of the DL methods in the four FS approaches on the N-BaIoT 
database are assessed in Figures 11–14. The EDLM method has highest results of 99.28%, 
98.51%, 98.89%, and 98.84% for P, R, f1-score, and ACC. Figure 11, proposed classifier gives 
highest precision of 94.08%, 95.47%, 98.10%, and 99.28% for MOPSO, LS-PIO, GWBWO, 
and IWMOA. IWMOA gives lowest precision of 90.21%, 91.80%, and 93.66% for CNN-
LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN. Figure 12, proposed classifier 
gives highest recall of 92.64%, 94.56%, 96.57%, and 98.51% for MOPSO, LS-PIO, GWBWO, 
and IWMOA. IWMOA gives lowest recall of 89.06%, 91.04%, 94.08%, 95.49%, 96.48%, and 
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97.55% for CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN. Figure 13, 
proposed classifier gives highest f1-score of 93.35%, 95.02%, 97.33%, and 98.89% for 
MOPSO, LS-PIO, GWBWO, and IWMOA. IWMOA gives lowest f1-score of 89.62%, 
91.41%, 94.98%, 96.34%, 97.21%, and 98.02% for CNN-LSTM, LS-DRNN, DNN, 
DWLSTM, LWBi-GRU, and CDBN. Figure 14, proposed classifier gives highest accuracy of 
94.47%, 95.56%, 97.60%, and 98.84% for MOPSO, LS-PIO, GWBWO, and IWMOA. 
IWMOA gives lowest accuracy of 90.76%, 92.93%, 95.34, 96.50%, 97.14%, and 97.96% for 
CNN-LSTM, LS-DRNN, DNN, DWLSTM, LWBi-GRU, and CDBN. 
5. CONCLUSION AND FUTURE WORK  
This study introduces an EDLM-based classifier for AD and an IWMOA-based FS. For FS, 
IWMOA simulates the human contact between a mother and her children, has been introduced. 
Compared to individual models, EDLM has demonstrated superior predictors and the ability to 
automate BND. The ensemble of DWLSTM, LWBi-GRU, and CDBN serves as the foundation 
for the suggested BND. Through the use of specially designed gates and memory cells, it can 
train using the duration to recall the state data and when to forget via DWLSTM.Using the 
Levy distribution, the update gate in the LWBi-GRU model assists in identifying the historical 
data that must be transmitted with the future data and weight updates. The LWBi-GRU model 
automatically excludes historical data that goes backwards and extracts feature information in 
a forward  direction. With the help of the CDBN classifier, CGBRBM can efficiently identify 
botnet attacks and learn the dataset's features. By averaging the predictions of various models, 
the EM can capture the diversity of samples. The Bot-IoT and N-BaIoT database, that have 
been downloaded from UCI and Kaggle, are used to simulate botnet attack scenarios. A 
thorough set of evaluation indicators, including P, R, F1-score, and ACC, are specifically 
applied for evaluating the efficacy of the recommended method. This illustrates how important 
it is to properly balance model efficacy and complexity across a variety of purposes. Future 
study should use reinforcement learning for greater training because it will be fully automated. 
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