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Abstract— Precise irrigation is currently attracting a lot of attention as the global population 
continues to rise, increasing the demand for food and water. As a result, farmers will require 
water and arable land to meet this demand. Due to the scarcity of both resources, farmers need 
an alternative solution that modifies their operations. Precision irrigation is the solution for 
producing larger, higher-quality, and more efficient yields with limited resources. The 
application of Deep Learning (DL) and the Internet of Things (IoT) is essential for transforming 
irrigation into a more productive and ecological system. In this research, we used DL and IoT 
for smart irrigation to improve fruit productivity. For profitable yields, the first important step 
is to choose the appropriate fruit based on soil and environmental conditions. Next, the fruit 
should be grown in a controlled environment. For fruit prediction, the Stacked Long Short-
Term Memory (Stacked-LSTM) model is used, and to maintain the controlled environment and 
detect abnormalities, the K-means clustering (KMC) algorithm is used. Both models are 
validated and deployed in the cloud. The Stacked LSTM model achieves an accuracy of 
98.33%, and KMC yields a minimum relative error of 2.49%. Environmental parameters from 
the field are collected using sensors and sent to the cloud. The DL model in the cloud analyzes 
the data and provides required results, such as suggesting the appropriate fruit for cultivation. 
If any environmental factor increases or decreases beyond the normal range, it gives a 
notification. To provide all these facilities in a user-friendly way, an interactive website is 
developed. 
 
Keywords—Smart Irrigation, Internet of Things, Fruits, Stacked Long Short Term Memory, 
Firebase, Sensor, Deep Learning.  
 
Introduction  

Machine Learning (ML) and Artificial Intelligence (AI) open up new possibilities in a wide 
range of industries, from smart agriculture to healthcare and finance, all because of huge data 
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collected by sensor networks [1]. According to the US Department of Agriculture, the 
agriculture sector employed 10.9% of the workforce and contributed $1.109 trillion United 
States Dollar (USD) to Gross Domestic Product (GDP) [2]. This paper proposes a 
comprehensive strategy for automating soil conditioning systems that include a real-time sensor 
network linked to the cloud, algorithm-powered controllers, and advanced DL algorithms. The 
article focuses on the long-term viability of fruit farming. Smart farming systems can use real-
time monitoring equipment and sensory data to improve crop quality and quantity, reduce costs, 
and promote sustainability by collecting high-resolution data from the field and surrounding 
environment. The economy and the establishment of a sustainable supply across a wide range 
of crops have prompted academics to focus on yield prediction techniques [3]. For the majority 
of the country's economy, fruit is an important crop. The global importance of fruit crops has 
prompted researchers to investigate how environmental conditions and soil physical qualities 
affect fruit quality rather than quantity.  

 
To improve fruit production, farmers need to select the appropriate fruit based on the 

environmental and soil conditions. After cultivating, maintaining control over these conditions 
is crucial for achieving profitable yields. Excessive or insufficient levels of various physical 
parameters can negatively impact the quality and quantity of the fruit. To address this, we 
utilized advanced technologies in Deep Learning (DL) and IoT. In this research, DL and IoT 
are employed to identify the appropriate fruit for cultivation and monitor whether environmental 
factors are within the acceptable range. Before starting the research, several works on agriculture 
using advanced technologies were studied and are described below. 

 
The article [4] describes a LoRa-based ML system for monitoring and scheduling correct 

irrigation using the IoT. Using data from soil moisture sensors, an automated irrigation system 
was designed that provided just what the eggplants and tomatoes needed. Water usage was 
reduced by 46% with the proposed technique compared to conventional watering, and the plants 
looked healthier as a result. According to the simulation results, the proposed system uses water 
far more efficiently in the experimental farming area than current methods. The study [5] 
presented the smart agriculture control system that collects environmental data and integrates it 
with an autonomous watering system. By merging data from IoT devices with an automated 
irrigation system, the proposed method assists farmers in expanding cultivation and ensuring 
crops receive an adequate water supply. During the growing season, vital field data such as 
humidity, temperature, light intensity, soil moisture, and ultraviolet range are recorded with IoT 
devices. Users can utilize the acquired data to continuously monitor the field at the given user 
address. Once the data has been received for processing, a fuzzy logic controller (FLC) is chosen 
to build a smart watering system. The effectiveness of the proposed technique was demonstrated 
by testing and evaluating the performance of the smart agricultural module in various 
environmental circumstances. The research [6] aims to create an ML model capable of 
estimating soil moisture levels. The model was trained and tested using data from the University 
of California, Irvine's publicly available Smart Irrigation System Dataset. The classification 
accuracy of the ResNet50 model was assessed using various performance metrics. The 
suggested model correctly classifies positive and negative samples 95% of the time. 
Furthermore, compared to other well-known ML models, the model outperforms most 
traditional methods. These findings have significant implications for the development of smart 
irrigation systems in precision farming. 

 
The research [7] describes a novel technique for upgrading farming systems that incorporates 

Artificial Neural Networks (ANN) into irrigation management. The primary objectives are to 
improve crop health and resource efficiency through an automated decision-support system 
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based on ANN insights, gather and track real-time data, and perform accurate data analysis for 
precise irrigation control. Using the provided training data, three models were trained: the 
proposed ANN model, the LSTM model, and the Convolutional Neural Network (CNN). The 
proposed model is evaluated and compared to CNN and LSTM algorithms to establish its 
effectiveness. When all criteria were considered, the ANN model stood out for its exceptional 
ability to accurately categorize moisture and temperature data, crucial for precision irrigation 
control. The study [8] suggests a sensor-based intelligent control system that uses IoT to 
implement smart agriculture approaches such as environmental data gathering and autonomous 
integration of irrigation systems. By merging data from IoT devices with an automated irrigation 
system, the proposed method assists farmers in expanding cultivation and ensuring crops receive 
an adequate water supply. Throughout the growing season, critical field data is collected using 
IoT devices. Users can utilize the acquired data to continuously monitor the field at the given 
user address. Once the data has been received for processing, an FLC is employed to build a 
smart watering system. The effectiveness of the proposed approach was validated by testing and 
evaluating the smart agricultural module's performance under various environmental conditions. 

 
The paper [9] presents a hybrid ML-IoT model for yield prediction. This approach consists 

of three stages: preprocessing, feature selection, and classification. The first steps are dataset 
preprocessing and feature selection using the correlation and variance inflation factors. A 
suggested smart agriculture system based on the IoT uses a two-tier ML model. The Adaptive 
k-Nearest Centroid Neighbor Classifier model in the first layer proposes soil quality estimation 
and sample classification based on input soil parameters. The Extreme Learning Machine 
(ELM) approach is used to predict crop yield in the second tier. The upgraded technique uses a 
modified version of the Butterfly Optimization Algorithm to update the weights, lowering error 
levels and improving ELM performance accuracy. The article [10] discusses using the IoT to 
implement smart farming. The suggested system's primary goals are automatic water irrigation 
and plant disease detection. Based on agricultural requirements, it applies ML algorithms to 
accurately forecast when crops will require water and to automatically identify pests. To reliably 
forecast plant ailments, the pest detection module uses a K-Nearest Neighbor and support vector 
machine. Beneficial properties were derived from plant leaves. Classification is then conducted 
utilizing the gathered features. To assess whether a plant has a pest infestation, relevant features 
must be extracted and categorized. The suggested system monitors, analyses, evaluates and 
regulates operations to automatically irrigate agricultural areas and diagnose plant illnesses. The 
paper investigates the numerical analysis of ML algorithms as well as the significance of precise 
categorization.  
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Methodology 
The methodology used to enhance the smart irrigation system for fruit production is detailed 

in this section. 

 
Fig. 1. Proposed DL and IoT methodology frameworkThe methodology starts with designing 
two DL models: Stacked LSTM for fruit prediction and KMC for detecting abnormalities in 
environmental factors. Both models are constructed, trained, and validated. After achieving 
satisfactory results, both models are deployed in the cloud to implement smart irrigation in 
real-time. Sensors are installed in the field to collect soil and environmental parameters. The 
sensor values are sent to Firebase using a Raspberry Pi, which helps in communicating the 
real-time data to the cloud. The developed DL models, already deployed in the cloud, use this 
real-time data to guide users in selecting the appropriate fruit for cultivation and understanding 
the environmental conditions. If any parameter deviates from the required range, a notification 
is sent to the user. To make the proposed methodology more user-friendly and interactive, a 
website is built. The proposed methodology framework is illustrated in Figure 1. 
Deep Learning  
Data acquisition and processing: The data used for smart irrigation of fruit production is taken 
from the Kaggle site [11]. The dataset consists of seven input features and a target. These input 
features include the soil's nitrogen ratio (N), the phosphorus ratio (P), the potassium-to-soil ratio 
(K), temperature in 0C, humidity as a %, soil pH value, and rainfall measured in millimeters 
(mm).  The dataset includes 22 crops, from which only fruit samples are selected. Each instance 
from the fruit data is given in Table 1. For each fruit, there are 100 samples, totaling 900 data 
samples. The last column in the dataset is categorical, representing fruit names. Label encoding 
is employed to convert the fruit names into numbers, decoding them to values between 0 and 9. 
The collected data has no missing values. Features like N, P, K, and Rainfall, which have values 
greater than 100, are scaled to the range of 0-100. 

Table 1.Sample data 
N P K Temperature Humidity pH Rainfall Label 
2 24 38 24.55982 91.63536 5.922936 111.9685 pomegranate 
111 87 48 26.39855 81.36029 5.571401 98.16752 banana 
1 35 34 30.79376 46.69537 6.273398 92.21319 mango 
38 135 203 41.36106 82.79783 6.444373 69.92107 grapes 
100 18 52 26.20234 80.38266 6.876067 56.47942 watermelon 
91 13 47 29.10968 92.43511 6.144109 27.95602 muskmelon 
28 123 202 22.76643 92.12439 6.442289 120.436 apple 
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30 7 15 33.23453 91.06054 7.825532 115.766 orange 
69 60 54 36.32268 93.06134 6.989927 141.1737 papaya 

After the pre-processing steps are completed, the data is split into two categories: 80% for 
training and the remaining 20% for testing. The training data holds 720 samples, and the testing 
data holds 180 samples. The distribution of fruit data for precise agriculture is shown in Figure 
2. 

 
Fig. 2. Train and test data distribution 

 
Once the preprocessing and data splitting are completed, 80% of the data is given to the DL 

model for training and validation purposes. The DL model is employed for crop prediction. 
 

Stacked LSTM: Based on the research, a Stacked LSTM model was proposed for 
implementing smart irrigation. The architecture of stacked LSTM is given in Figure 3. To 
predict the crop based on irrigation data, an LSTM, a subset of the RNN model, was used. Each 
LSTM unit comprises four gates: input gate, forget gate, output gate, and cell [12]. The initial 
parameters for an LSTM unit are 𝑐 = 0 and ℎ = 0, and the equations for the unit are given 
below: 

𝑓௧ = 𝜎൫𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏൯   [1] 

𝑖௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏)   [2] 

𝑜௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏)   [3] 

�̃�௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏)   [4] 

𝑐௧ = 𝑓௧ ⨀ 𝑐௧ିଵ + 𝑖௧ ⨀ �̃�௧    [5] 

ℎ௧ = 𝑜௧ ⨀ 𝜎(𝑐௧)     [6] 

The subscript 𝑡 indexes the timestep. 𝑥௧ ∈ 𝑅ௗ represents the LSTM’s input vector, and 𝑓௧ ∈
(0,1), 𝑖௧ ∈ (0,1), and 𝑜௧ ∈ (0,1)represents the activation vector of forget gate, input gate 
and output gate, ℎ௧ ∈ (−1,1) represents the LSTM unit's hidden state or output vector. �̃�௧ ∈
(−1,1) represents the cell input’s activation vector, 𝑐௧ ∈ 𝑅 is the cell state vector. 𝑏 ∈
𝑅, and 𝑊 ∈ 𝑅.ௗ represents the bias and weight parameters updated in the training stage, 
where ℎ and 𝑑 represents the number of hidden units and input features. 

 
Overfitting the training data, which causes the model to learn statistical noise, is a significant 

issue in training a complex model [13]. Poor performance may arise when the model is applied 
in various scenarios. To mitigate these issues, the dropout approach is employed. 

 

Train
80%

Test
20%

F R U I T  P R O D U C T I O N  D A T A  
D I S T R I B U T I O N
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Fig. 3. Stacked LSTM architecture 
 

Dropout is used to randomly remove nodes from the model's hidden and input layers. This 
technique helps the network focus on learning essential features by reducing reliance on 
specific nodes, thus enhancing generalization capability. Dropout modifies the forward 
propagation equation as follows: 

𝑟
()

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)     [7] 

𝑦()෪ = 𝑟(). 𝑦()     [8] 

𝑧
(ାଵ)

= 𝑤
(ାଵ)

𝑦()෪ + 𝑏
(ାଵ)    [9] 

𝑦
(ାଵ)

= 𝑓ቀ𝑧
(ାଵ)

ቁ   [10] 

Here, 𝑧, 𝑦, 𝑤, and 𝑏 represents the pre-activation, post-activation, weight, and bias of output 
vector from layer (𝑙 +  1). A dropout layer is introduced after each LSTM layer in our model 
with a dropout rate of 0.1, removing 10% of the input nodes for each LSTM layer. 

 
The loss function measures how far the actual targets deviate from the model's predicted 

outcomes. Minimizing this difference, aiming for the function's output to approach zero, 
signifies optimal model performance. The cross-entropy function is used, because the problem 
involves binary classification. However, various other loss functions are applicable depending 
on the model and task. The formula for binary cross-entropy loss is given in Equation (11): 

− ∑ 𝑡𝑙𝑜𝑔൫𝑓(𝑠)൯ + (1 − 𝑡)𝑙𝑜𝑔൫1 − 𝑓(𝑠)൯
ୀ   [11] 

The inputs and their weights are denoted by 𝑠, the activation function by 𝑓, and the target 
estimation by 𝑡. Through optimization strategies, the model's learning process can be enhanced 
and subsequently updated. The loss indicates how closely the model approximates the target 
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output. By determining optimal weights, these strategies help minimize errors in translating 
inputs to outputs. Adam enables dynamic learning rates. Adam's updating equations are as 
follows: 

𝑣௧ = 𝛽ଵ. 𝑣௧ିଵ − (1 − 𝛽ଵ). 𝑔௧   [12] 

𝑠௧ = 𝛽ଶ. 𝑣௧ିଵ − (1 − 𝛽ଶ). 𝑔௧
ଶ   [13] 

∆𝑤௧ = −𝜂
௩

ඥ௦ାఢ
. 𝑔௧    [14] 

𝑤௧ାଵ = 𝑤௧ + Δ𝑤௧    [15] 

The hyperparameters are represented by 𝛽ଵ and 𝛽ଶ, initial learning rate by 𝜂, gradient at 𝑡 is 
represented by 𝑔௧, gradient’s exponential average is represented by 𝑣௧, and the square of each 
parameter 𝑠௧. An activation layer, appropriately selected and tailored to the current task, is 
necessary to define the final step in the prediction process: the weighted sum of the preceding 
layers. For addressing a binary categorization issue, thus the sigmoid function will be employed 
and it is defined in Equation (16): 

𝜎(𝑥) =
ଵ

ଵାషೣ     [16] 

Where 𝑥 represents the sigmoid function’s input and 𝑒 represents the Euler's number.  
 

K-Means Clustering: The KMC is a widely used technique for grouping a dataset into K 
distinct, non-overlapping clusters [14]. Mathematically, the KMC approach is defined as 
follows: 𝐾 denotes the total clusters, 𝑛 represents the total data points, 𝑑 represents the actual 
dimensions, 𝑥  stands for data point 𝑖 (𝑖 ∈ 1 to 𝑛), and 𝑐 represents the centroid of cluster 𝑘. 
KMC seeks to decrease within-cluster variance, commonly referred to as distortion or inertia. 
This is determined by summing the squared distances between all data points and their cluster 
centroids. The explanation of algorithm is detailed below 
1. Initialization: Begin by placing 𝐾 randomly selected centroids 𝑐 into each cluster.  
2. Assignment: Each data 𝑥  is assigned to the closest centroid using the Euclidean distance: 

𝑎𝑟𝑔𝑚𝑖𝑛‖𝑥 − 𝑐‖ଶ    [17] 
3. Updation: The centroids 𝑐 are updated by calculating mean of all data points assigned to 

cluster:  

𝑐 =
ଵ

|ௌೖ|
∑ 𝑥௫∈ௌೖ

    [18] 

where 𝑆 represents the set of 𝑥 assigned to 𝑘.  
4. Repeat the process 2 and 3 till it converged. 

The objective of the clustering is to reduce the within-cluster sum of squares (WCSS): 

𝑊𝐶𝑆𝑆 = ∑ ∑ ‖𝑥 − 𝑐‖ଶ
௫∈ௌೖ


ୀଵ         [19] 

Upon reaching a maximum number of iterations or if the centroids stabilize during 
iterations, the K-means algorithm converges. As soon as the data points converge, they are 
placed into one of the K clusters according to how close they are to the centroid𝑐. With the 
goal of reducing inertia, variance, or the sum of squared distances during the iterative process, 
KMC produces a set of K clusters, each defined by its centroid. KMC converges when the 
centroids stabilize between iterations or when the maximum number of iterations is reached. 
KMC helps identify anomalies in the irrigation dataset. If any parameters deviate from the 
required levels, whether increasing or decreasing, they can be easily identified using this 
algorithm. 
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Wireless Sensor Network 
Firebase is rapidly gaining popularity among software developers due to its capacity to work 

with "not only structured query language" ("NoSQL") data structures. These structures can 
manage a diverse set of data types, quantities, origins, and formats. Firebase provides data that 
is updated in real-time and responds quickly. Authentication, cloud messaging, database 
management, and API connectivity are some of the most popular Firebase uses among 
developers. For data processing, researchers typically utilize Firebase to send information from 
IoT devices to user systems [15]. One example is the monitoring of natural production 
parameters. Firebase now offers six core services: cloud messaging and alerts, authentication, 
analytics, real-time database, hosting, and cloud. To facilitate communication between end 
users and IoT devices, this study makes use of the Firebase real-time database service. 

 
The IoT system has two endpoints. The first endpoint is the IoT device, which communicates 

with the Firebase Realtime Database and delivers data such as N, P, K, temperature, pH, 
humidity, absolute rainfall, and motor status, among other parameters. This endpoint then 
connects to the web application, which serves as the second endpoint. The web application 
reads the data, displays it on a visually appealing dashboard, and notifies the user of any 
irregularities in the physical parameters discovered. 

 
Results and Discussion  

For precise irrigation, we used two advanced technologies: DL and IoT. First, a Stacked 
LSTM is constructed and trained to accurately predict the suitable fruit for cultivation based 
on environmental factors. Next, the KMC algorithm is used to detect anomalies in 
environmental factors, indicating deviations from the optimal range. This helps in identifying 
environmental anomalies such as excessive or insufficient conditions, providing timely 
notifications. Secondly, the developed Stacked LSTM and KMC models are deployed in the 
cloud. Sensors and Raspberry Pi devices are utilized to collect real-time data from the field. 
The models deployed in the cloud handle fruit prediction and anomaly detection based on the 
collected data. A website is created for user interface purposes. The detailed outcomes of DL 
and IoT integration are outlined below. 

 
DL Model Evaluation  

The outcome of the Stacked LSTM model in training for the fruit prediction task is evaluated 
using accuracy and loss values. Figures 4 and 5 depict the accuracy and loss plots of the Stacked 
LSTM model during both the training and validation phases. In both phases, the accuracy value 
exceeds 0.99 and the loss is less than 0.1. The Stacked LSTM model is further evaluated using 
test data, yielding accuracy, precision, recall, and F1 scores of 98.33%, 97.78%, 98.88%, and 
98.32%, respectively. These results demonstrate the excellence of the proposed DL model in 
fruit prediction based on soil and environmental conditions. 
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Fig. 4. Accuracy graph of proposed DL model 
 

 
Fig. 5. Loss graph of proposed DL model 
 
Table 2. Outcome of the DL model on  

 
Next, the KMC algorithm is evaluated 

to detect anomalies in soil and 
environmental conditions. The KMC 
algorithm shows a relative error of 2.49%, 
indicating minimal discrepancy. 
 
IoT Integration 

After evaluating the outcomes of both models, we deployed them in the cloud. Real-time 
data including the physical parameters related to irrigation is collected from sensors and sent to 
Firebase. Figure 6 illustrates the acquisition of real-time data in Firebase. 

 

 
Fig. 6. Data collection in Firebase 

Metrics Metrics Value (%) 

Accuracy 98.33 

Precision 97.78 

Recall 98.88 

F1-score 98.32 
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The interactive website is designed and the functionality of the website is tested on the local 

host. The website displays sensor values from the field and enables users to predict the most 
profitable fruit for cultivation based on soil and environmental conditions using the Stacked 
LSTM model. Next, it identifies any abnormalities in soil and environmental variables using the 
KMC algorithm. Timely notifications of anomalies help users adjust their setup; for instance, if 
levels of N, P, or K are low, users can apply fertilizer. This highly automated and intelligent 
system helps mitigate losses in agriculture. The website's functionality is illustrated in Figure 7. 
 

 
Fig. 7. Automated website for smart irrigation using DL and IoT 
 
Conclusion 

The research successfully developed a smart irrigation system to enhance fruit productivity 
using DL and IoT technologies. The environmental and soil data from 9 types of fruits were 
collected and processed. To predict the appropriate fruit based on environmental and soil 
conditions, the Stacked LSTM model was implemented, achieving excellent performance 
metrics: accuracy: 98.33%, precision: 97.78%, recall: 98.88% and f1-score: 98.32%. Next, to 
maintain a controlled environment, the KMC algorithm was implemented. It helps detect if any 
irrigation variables exceed or fall below the normal range. KMC detects abnormalities with an 
error rate of 2.49%. The DL model is deployed in the cloud. Finally, a user-friendly website was 
designed. The website allows users to view environmental and soil parameters and suggests the 
appropriate fruit to cultivate. It also sends notifications if any parameter is not within the proper 
range. This invention can help farmers enhance fruit productivity while using minimal 
resources. 
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