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Abstract— The safety of construction workers can be significantly enhanced by wearing safety 
helmets. Workers frequently remove their helmets due to a lack of knowledge and discomfort, 
exposing them to hidden dangers. Accidents involving falling objects from heights put workers 
who are not wearing safety helmets at increased risk. Therefore, there is a critical need for a 
fast and accurate safety helmet detector to oversee construction site safety. However, standard 
manual monitoring is time-consuming and labor-intensive, and solutions that include attaching 
sensors to helmets are not generally used. To address this issue, this study presents a Deep 
Learning (DL)--based technique for accurately and rapidly detecting safety helmets. The data 
for training the DL models is sourced from the Kaggle site and goes through preprocessing 
stages such as image improvement and resizing. Helmet detection utilizes DL models such as 
You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), and Region-based 
Convolutional Neural Network (RCNN). The experimental results show that the YOLO model 
has the highest accuracy, precision, recall, and mean average precision (mAP), at 94.7%, 
93.8%, 94.2%, and 94.62%, respectively. These findings highlight the effectiveness of YOLO 
in real-time helmet identification, greatly contributing to accident avoidance on construction 
sites. 
 
Keywords—Safety Helmet, Deep Learning, Object Detection, Computer Vision, Kaggle, 
Construction Site, Accuracy.  
 
Introduction  

The impact of unsafe working conditions on productivity, as well as the subsequent labor 
exodus, has made workplace safety a prominent concern across various industries. Every year, 
many Americans die due to the hazardous working conditions that much of the labor force must 
endure. In 2012, 4,383 people lost their lives due to occupational injuries in the United States 
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(US), averaging 89 deaths/week and over 12 deaths/day [1]. Construction workers are frequently 
injured due to the industry's dangerous nature. In 2014, the construction industry accounted for 
one out of every five private sector employee fatalities, making it the deadliest industry in the 
American economy. Between 2015 and 2018, inadequate helmet use contributed to 53 
construction accidents (67.95% of all accidents) reported to the State Office of work safety. In 
many developing countries, the death rate is higher than in industrialized countries. For 
example, compared to the US, the Republic of Korea's construction industry fatality rate is more 
than twice as high. The greater frequency of construction deaths in developing countries is a 
cause for concern among construction managers. Based on the International Labour 
Organization report, the construction site has the maximum workplace accident rate in any 
industry [2]. Workers in the construction industry typically work in hazardous conditions and 
risk their lives to perform high-risk jobs. The workers safety must be a key consideration. 
Monitoring the use of protective equipment is part of the construction site safety management 
process. The majority of workplace falls involve workers injuring their heads on hard floors 
after falling from significant heights [3]. The primary function of safety helmets is to protect 
workers from harm in the event of a fall. Properly worn hard helmets can prevent half of all 
fatalities caused by falls, as well as a significant rate of deaths. According to previous research, 
a safety helmet can eliminate the risk of serious brain damage by up to 95% [4]. 

 
Numerous countries have implemented industrial safety measures to ensure the well-being 

of their workers. It is impractical to personally track individuals who do not wear safety helmets, 
especially on large construction sites [5]. Therefore, it is critical to have a system that can 
automatically detect when a safety helmet is worn. Computer Vision (CV) and DL can address 
the object detection challenge in automatic helmet detection [6, 7]. DL's computational approach 
and precision in object detection have revolutionized CV. In this study, we used images of 
construction workers to develop and evaluate three DL models: SSD, YOLO, and RCNN, all 
aimed at recognizing helmets. 

 
Literature Survey 

Several studies have been conducted to determine the effectiveness of construction workers' 
safety helmets. This review on safety helmet recognition covers two key approaches: Machine 
Learning (ML) and DL detection. A study [8] discusses one of many deep surveillance 
applications that monitor people who ride motorcycles without helmets or with more than one 
passenger. To manage overloaded traffic, an SSD was implemented, and multiscale features 
were extracted using transfer learning. To further enhance detection accuracy, the suggested 
model integrates aspect ratio awareness training during the following fine-tuning process. A 
real-world dataset collected from surveillance cameras was utilized to evaluate the model. This 
dataset encompassed diverse viewpoints, temperatures, and population densities on the streets. 
At 57 frames per second (FPS), the method successfully classifies items in a dataset, achieving 
a high average mean precision across four classes. By comparing the proposed methodology to 
current methods that use experimental data, it is found to be quicker and more accurate. Using 
a transfer learning technique, the study [9] trained two SSD models to recognize industrial safety 
helmets: one with ResNet50 and the other with MobileNetV2. The training was done with a 
dataset available on the Kaggle website. Regularization, localization, classification, and total 
loss were some of the metrics used to assess the models. When looking at the loss parameters, 
SSD ResNet50 was outperformed by SSD MobileNetV2 in classification, regularization, and 
localization. 
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The study [10] introduces Improved Boosted Random Ferns (IBRFs) as a new method for 
detecting the wear state of safety helmets. IBRFs are based on the Boosted Random Ferns 
method and use a weighted coefficient to boost performance. To build the feature domain space 
of an image, the Oriented Gradient Histogram is used for feature extraction. Next, the feature 
domain space is seeded with ferns using the random binary testing approach. The next step is to 
generate a subpar classifier by randomly selecting ferns. Ultimately, an improved Real 
AdaBoost algorithm is used to produce IBRFs from the best of these. Experimental validation 
on a larger public safety helmet dataset reveals that IBRFs outperform current sophisticated 
detection techniques. Research [11] presents a technique for optimizing the BottleneckCSP 
structure, which can drastically reduce model complexity without changing the network's input 
and output sizes. This work creates an upsampling feature enhancement element to enrich the 
semantic richness of the feature map while preventing information loss during upsampling. 
Furthermore, this research proposes a self-attention strategy to reduce the impact of duplicated 
information in feature fusion on detection results. New feature maps with robust semantics and 
accurate location information are adaptively created by fusing neighboring shallow feature maps 
with upsampled feature maps using the channel and location attention elements, respectively. 
Under the same computational restrictions as the leading algorithms, the proposed methodology 
surpasses them in terms of inference speed and mAP performance. 

 
Researchers [12] created a revolutionary automated method that uses a lightweight CNN 

model to detect whether everyone on a site is wearing a helmet. The feature extraction network 
is based on GhostNet. During feature processing, a network capable of combining features and 
performing multi-scale segmentation was built. The feature fusion network architecture 
improves detection accuracy by diversifying helmet features. The LRCA-Net, a lighter and more 
efficient version of the attention mechanism, was also introduced. When evaluated on a dataset, 
the recommended lightweight safety helmet detection system achieves outstanding mAP and 
FPS performance. The paper [13] proposes a method for detecting helmet usage using the 
EfficientDet approach. The initial cluster centers were optimized using the K-Means++ 
clustering method. Image feature maps were obtained by employing the SeparableConv2D 
network from the EfficientDet model, along with the straightforward and effective Bi-
directional Feature Pyramid Network (BiFPN). The Channel-wise Class Loss function was 
utilized to improve model detection accuracy. Experimental outcome on a publicly accessible 
helmet dataset shows that the enhanced EfficientDet model better fulfills the requirements for 
recognizing safety helmet usage compared to existing methods. 

 
DL Models 

Three DL models were employed in this research for helmet detection from images. The 
working and architecture of all three models are detailed in this section. 
YOLO 

The architecture of YOLO was inspired by Google's Neural Network [14]. The network 
was trained by the Darknet model and tested for item detection on the VOC Pascal Dataset. 
Here, (1 × 1) convolutional filters are used instead of GoogLeNet's inception modules, 
followed by (3 × 3) filters. The only exception is the first Convolutional Layer (CL), which 
uses a (7 × 7) filter. Figure 1 shows the YOLO architecture, which includes 24-CLs, 2-Fully 
Connected Layers (FCL), and other components. Only four out of the twenty-four CLs have 
max Pooling Layers (PL) after them. The technique's application of PL and (1 × 1) convolution 
are its standout features. The initial twenty layers, followed by an average PL and an FCL, 
were trained and fine-tuned using the ImageNet 2012 dataset. The authors devoted around one 
week to this process. Subsequently, 4-CLs and 2-FCLs with random weights were used to fine-
tune the model for the helmet detection task. All convolutional and dense layers employ the 
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Leaky Rectified Linear Unit, except for the last layer, which employs a linear function. This 
final layer is responsible for predicting class probabilities as well as the placements of the 
bounding box (BB). Some have noted that this YOLO version is inaccurate in its localization 
and has lower recall than two-stage object detectors [15]. The loss function, given by Equation 
(1), consistently makes use of the sum of squared errors. It is clear that the underlying equation 
contains four terms that may be stated using the following notations:(𝑥ො, 𝑦ො), and (𝑥, 𝑦) 
represents the estimated and the Ground Truth (GT) of the BB’s center, ൫𝑤ෝ, ℎ൯, and (𝑤, ℎ) 
indicates the estimated and GT of the BB’s width and height. 

 
The first two terms are linked with errors caused by differences between the actual and 

expected locations of BB. When dealing with smaller BBs, deviations have a greater impact 
on IoU than when working with larger ones. To address this issue, the loss function uses the 
square root of the BB's width and height. The third term represents the difference in confidence 
scores between predictions made before and after the object's existence in each BB. In the first 
three formulas, 1

 represents the 𝑖௧ grid that forecasts the 𝑗௧ BB. If the cell contains the 
object, it will be 1; otherwise, it will be 0. The object may be present in a specific grid cell 
according to GT, yet the model may falsely claim that there is no object there. The attempt is 
to reduce the loss not only while the object is in the grid cell but also when it is not. Objects in 
specific grid cells may not exist in the real world, but the model may mistakenly show that 
they do. Similarly, the indicator function 1

represents the 𝑖௧ grid that forecasts the 𝑗௧ 
BB. If the cell is empty, it will be 1; if it contains the object, it will be 0. The final term, 
classification loss, aims to reduce misclassification errors. The indicator function 1

 
indicates a grid cell with an object, returning 1 if present and 0 otherwise. To prevent gradient 
divergence, the hyperparameters 𝜆ௗ and 𝜆 are commonly used. If no grid cell includes 
the object, the confidence score and following gradients will converge to zero. The confidence 
score and subsequent gradients will converge to 0 if the object is not present in any grid cell. 
To address this issue, we increase the hyperparameter 𝜆ௗ in the first two terms to optimize 
the loss of bounding box coordinates when the grid cell contains the object. Similarly, in the 
fourth term, we raise the hyperparameter 𝜆 to reduce the loss when the grid cell does not 
contain the object. Common practice is to set 𝜆ௗ to a high value and 𝜆 to a low 

value.𝜆ௗ ∑ ∑ 1
[(𝑥 − 𝑥ො)

ଶ + (𝑦 − 𝑦ො)ଶ]
ୀ

ௌమ
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Fig. 1. YOLO architectureSSD 

To begin with, the SSD method constructs a set of bounding boxes (BB) of a fixed size and 
assigns scores to each based on the number of instances of the given object class it detects 
inside [16]. This set of boxes is then inputted into a feed-forward convolutional network. A 
non-maximum suppression (NMS) is employed to generate the predicted outcome. The base 
network is commonly used for high-quality image classification. Subsequently, the network is 
augmented with an auxiliary structure to create detections that incorporate the following key 
criteria. 

 
Convolutional feature layers are included in the terminated base network. These layers allow 

for detection predictions at various scales by gradually diminishing in size. For detection 
prediction, the convolutional model varies across feature layers. Each additional feature layer 
utilizes a predefined set of convolutional filters to generate detection predictions. In a feature 
layer with 𝑚 × 𝑛 channels, these predictions rely on a 3 × 3 × 𝑝 small kernel. This kernel 
outputs either a shape offset relative to the default box coordinates or a category score at each 
of the 𝑚 × 𝑛 locations where it is applied. After determining the default box location, the BB 
offset output values are then added to each point on the feature map. When there are numerous 
feature maps, the network's top level assigns default BB to each feature map cell. Because the 
feature map is tiled in a convolutional fashion, the default boxes are fixedly positioned relative 
to their corresponding cells. Offsets are anticipated with regard to the cell's default box shapes, 
as well as the per-class scores, which indicates whether or not each box contains an instance of 
a specific class at each feature map cell.  

 
Unlike typical detectors that rely on region proposals, SSD training involves assigning GT 

data to specific outputs within a predefined set of detector outputs. This distinction sets SSD 
apart from traditional detectors. Before training the network, it is crucial to determine which 
default boxes correspond to the GT detections. Default boxes vary in size, aspect ratio, and 
location, and one is selected for each GT box. The SSD training objective builds on the 
MultiBox objective by handling several object categories. To match the 𝑖௧ default box with 
the 𝑗௧ GT box of category 𝑝, use the indicator 𝑥


= {1,0}. The previously mentioned matching 

strategy allows for ∑ 𝑥


≥ 1 . The objective loss function is calculated by combining the 

confidence loss (𝑐𝑜𝑛𝑓) and localization loss (𝑙𝑜𝑐). 
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𝐿(𝑥, 𝑐, 𝑙. 𝑔) =
ଵ

ே
ቀ𝐿(𝑥, 𝑐) + 𝛼𝐿(𝑥, 𝑙, 𝑔)ቁ  [2] 

Here, 𝑁 represents the sum of all matching default boxes. When 𝑁 = 0, the loss is zero. 
Localization loss is the Smooth 𝐿1 loss when comparing the features of the GT box (𝑔) with 
those of the predicted box (𝑙). Offsets for the center (𝑐𝑥, 𝑐𝑦), height (ℎ), and width (𝑤) of the 
default BB are regressed. 

𝐿(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥
 𝑠𝑚𝑜𝑜𝑡ℎଵ൫𝑙

 − 𝑔ො
൯∈{௫,௬,௪,}

ே
∈௦  [3] 

The confidence loss is estimated by applying the softmax function to the confidences (𝑐) of 
several classes. 

𝐿(𝑥, 𝑐) = − ∑ 𝑥


𝑙𝑜𝑔൫�̂�


൯ − ∑ 𝑙𝑜𝑔(�̂�
)   ∈ே

ே
∈௦ [4] 

Where, 

�̂�


=
௫൫


൯

∑ ௫ ൫



൯
    [5] 

RCNN 
The Region-based CNN, or R-CNN, is a type of DL architecture used for CV tasks that 

require object detection. R-CNN was an early model that helped advance object detection by 
combining the strengths of region-based methods with CNNs [17]. Now, let's take a deeper 
look at R-CNN to see how it works. 

 
Region Proposal: R-CNN begins by partitioning the input image into smaller pieces. These 

locations are referred to as "region proposals" and "region candidates." The region 
recommendation phase is responsible for generating a list of prospective image regions that may 
contain objects. Rather than relying on its internal algorithms, R-CNN generates region 
proposals using third-party methodologies such as Selective Search or Edge Boxes. For 
example, Selective Search uses image cues such as color, texture, and shape to merge or separate 
image components to provide a diverse set of region suggestions. The phases of Selective Search 
are demonstrated below, starting with an input image and progressing through an image with 
several segmented masks, a reduced collection of masks, and finally the masks that comprise 
the image's key features. 

 
Extraction of Features: To train a CNN to extract features, region proposals are first 

generated, then around 2,000 areas are extracted and warped to a consistent input size (224x224 
pixels). To get 16 pixels of context in the warped picture, the region size is increased to a new 
size before warping. For generic feature representation, the AlexNet is used and it is fine-tuned 
on a large dataset such as ImageNet. The CNN generates a high-dimensional feature vector that 
represents the content of the suggested region. 

 
Classifying Objects: To process the feature vectors obtained from the region proposals, each 

object type of interest is assigned its own ML classifier. When it comes to classification, R-CNN 
typically uses ML. To determine if the proposed region contains a member of each class, a 
separate support vector machine (SVM) is trained for each. Positive samples during training are 
regions that contain at least one instance of the class. Areas that do not are considered negative 
samples. 

 
Bounded Box Regression: R-CNN supports BB regression in addition to object 

classification. For each class, several regression models are built to fine-tune the BB position 
and size of the detected object. BB regression improves object localization accuracy by altering 
the initially suggested BB to better reflect the object's actual boundaries. 
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NMS: To eliminate the duplicate or very overlapping BB, R-CNN employs NMS after 
classifying and regressing BB for each area proposal. NMS ensures that only the highest 
confidence and non-overlapping BB are used for final object detections. 
 
Results and Discussion  

The experiment was conducted in a Jupyter Notebook using the Python programming 
language. For safety helmet detection, publicly available data from the internet was collected 
and processed. The processed data was split and fed into DL models like YOLO, SSD, and 
RCNN for detecting helmets and heads. The performance of all three models was evaluated 
using metrics such as accuracy, precision, recall, and mAP. Finally, the best model for helmet 
detection from real-time images of construction sites was identified. The entire methodology 
is outlined in Figure 2. 

 

 
 
Fig. 2. Helmet detection methodology 
 
Data Collection and Processing 

For safety helmet detection, we collected data from the Kaggle site [15]. The dataset contains 
5000 real-world images annotated with three classes: head, helmet, and person. We used 
annotations for head and helmet in our research. Sample images from the Kaggle are given in 
Figure 3. The dataset is further split into three sections: training, validation, and test, in the ratio 
of 7:2:1. Some images in the dataset are not clear, so we employed image enhancement 
techniques. Specifically, gamma correction was used for image enhancement. Next, we applied 
three different DL models for helmet detection. The input neurons of the algorithms vary, and 
based on each algorithm, the images are resized accordingly. 
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Fig. 3. Sample images from Kaggle dataset 
 
Experimental Outcome 

The effectiveness of the DL algorithm is measured using four performance measures and it 
can be determined through the confusion matrix parameters. True Positive (TP) denotes the 
right estimation of a human with a helmet, False Positive (FP) the wrong forecast of a human 
with a helmet, True Negative (TN) represents the right estimation of a human without a helmet, 
and False Negative (FN) the wrong estimation of a human without a helmet. Table 1 gives the 
metrics formula and the values achieved by each algorithm.  

 
The YOLO model achieved the highest accuracy among all models, reaching 94.7%. The 

SSD model followed closely with an accuracy of 93.6%. In terms of precision, YOLO also 
performed the best with a score of 93.8%, slightly higher than SSD's 92.78%. For recall, YOLO 
and RCNN obtained the highest values of 94.2% and 90.5% respectively. YOLO also excelled 
in mAP with a score of 94.62%. 
Table 1. 
Performance 
evaluation of 
DL model on 
helmet 
detection 
from 
construction 
site 
imagesModel 

Accuracy (%) Precision 
(%) 

Recall 
(%) 

mAP (%) 

Formula 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑐)ଶ
ୀଵ

2
 

YOLO 94.7 93.8 94.2 94.62 

RCNN 92.7 91.04 90.5 92.2 

SSD 93.6 92.78 92 93.8 

 
 A comparative analysis of all 
DL models for helmet detection using the test data is presented in Figure 4. Different colors 
are used to distinguish between the outcomes of each DL model. The figure clearly illustrates 
YOLO's superior performance across all metrics. 
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Fig. 4. DL model performance comparison on safety helmet detection 
 

Apart from performance metrics, the execution time required for helmet identification was 
evaluated and it is given in Figure 5. RCNN achieved the shortest time of 18 seconds, while 
YOLO required a maximum of 25 seconds. RCNN performed better in terms of execution time, 
whereas YOLO excelled in accuracy. Considering the critical importance of detection accuracy 
in a construction site setting, YOLO was chosen as the preferred model. 

 
 

 
Fig. 5. Execution time comparison of DL model 

 
Figure 6 depicts the outcome of the YOLO model in detecting heads and helmets from 

images. The results demonstrate YOLO's ability to accurately identify individuals wearing 
helmets. Based on these results, YOLO is a good choice for applications that need accurate and 
reliable object recognition in the real world, such as safety helmet detection. 
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Fig. 6. Safety helmet detection by YOLO model  
 
Conclusion 

The present research explores helmet recognition as a CV challenge and proposes a DL-
based solution. Worker safety is paramount on construction sites. Existing research has 
struggled with distinguishing items in poor-light conditions and smaller objects. To enhance 
worker safety, a DL-based architecture for automatically detecting safety helmets on 
construction sites was developed and compared. In this study, we employed the RCNN model, 
SSD, and YOLO for helmet identification. All three models were evaluated using performance 
measures and execution time. YOLO emerged as the top performer, achieving an excellent 
helmet detection accuracy of 94.7%. Following YOLO, SSD achieved the next highest accuracy 
of 93.6%. YOLO required 25 seconds for helmet prediction from images. These results indicate 
that the YOLO model is suitable for real-time implementation, enhancing worker safety without 
human intervention. In the future, the deployment of the designed YOLO model at construction 
sites is planned. The DL model will be integrated with advanced technologies such as Field-
Programmable Gate Array (FPGA) and Internet of Things (IoT) to transmit data, including 
images and alert messages, to construction supervisors. FPGA will handle powerful 
computational tasks and memory management efficiently. 
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