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Abstract 

Cardiovascular diseases (heart diseases) are the essential driver of mortality worldwide. The sooner they can be 
expected and classified, the more noteworthy the quantity of lives that can be saved. An electrocardiogram (ECG) is 
a pervasive, financially savvy, and harmless instrument for evaluating the heart's electrical movement and is used 
for the distinguishing proof of cardiovascular diseases. This paper utilized deep learning ways to deal with four 
critical cardiovascular diseases: deviant heartbeat, myocardial localized necrosis, history of myocardial dead tissue, 
and ordinary people, using a public ECG pictures dataset of heart patients. The exchange learning approach was 
inspected using the low-scale pre-trained deep neural networks Squeeze Net and Alex Net. A novel convolutional 
neural network (CNN) engineering was presented for the expectation of heart irregularities. Third, the recently 
portrayed pre-trained models and our recommended CNN model filled in as element extraction apparatuses for 
standard machine learning algorithms, including support vector machine, K-nearest neighbours, decision tree, random 
forest, and Naïve Bayes. The exploratory outcomes demonstrate that the presentation measurements of the 
proposed CNN model outperform those of existing works, accomplishing 998.23% accuracy, 98.22% recall, 
98.31% precision, and 98.21% F1 score. Moreover, the recommended CNN model achieves an ideal score of 99.79% for 
highlight extraction while utilising the NB algorithm. 
  
Impact Statement: Artificial intelligence essentially improves personal satisfaction. In particular, the early ID of 
diseases can add to saving lives. 
This review presents an original lightweight CNN engineering that upgrades the accuracy of cardiovascular 
disease order to 98.23% compared with present status of-the-craftsmanship techniques, using a dataset of ECG 
pictures from heart patients, and is operable on a solitary computer processor, subsequently tending to 
computational power limitations. The characterization accuracy has especially upgraded following the utilization 
of the proposed technique as an element extraction device for traditional machine learning methods. An accuracy of 
99.79% has been achieved with the Naïve Bayes algorithm. Thus, this strategy may be integrated into the medical 
services IoT environment. This will spur further artificial intelligence specialists to examine elective methodologies for 
cardiovascular disease diagnosis. 
 

Index Terms: Cardiovascular, deep learning, electrocardiogram (ECG) images, feature extraction, machine 
learning, transfer learning. 

 

I. INTRODUCTION 
 

As per the World Wellbeing Association, cardiovascular diseases are the essential driver of mortality internationally. 
They are answerable for around 17.9 million fatalities every year, comprising 32% of worldwide mortality Roughly 
85% of all fatalities coming about because of cardiovascular disease are owing to coronary failures, clinically alluded 
to as myocardial areas of dead tissue (MI) [1]. A productive discovery of cardiovascular disease at a previous stage can 
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save a few lives [1]. Different methodologies are utilized in the medical services framework to distinguish heart 
problems, including electrocardiogram(ECG), echocardiography, cardiovascular attractive reverberation imaging, 
processed tomography, and blood testing. The ECG is a pervasive, smart, and harmless instrument for evaluating the 
heart's electrical movement [4]. It is used to determine cardiovascular disorders related to have the heart [4], [5]. A skilled 
clinician can distinguish heart ailment through ECG waves. This manual technique might yield incorrect discoveries 
and is tedious [5]. 

Progressions in artificial intelligence in healthcare hold huge potential to alleviate clinical blunders. In particular, the use of 
machine learning and deep learning systems for the computerised expectation of cardiovascular diseases. [3],[6]-[10]. 
Machine learning approaches require a specialist element for highlight extraction and choice to find appropriate elements 
before the characterization step. Highlight extraction is the most common way of reducing the quantity of elements 
in a dataset by changing or extending the information into a new, lower-layered highlight space while keeping the relevant 
data of the information [11], [12]. 

Highlight extraction includes producing another arrangement of elements, unmistakable from the information 
highlights, by consolidating unique elements into a lower-layered space that holds the larger part, while perhaps not all, 
of the data from the info information. The most perceived highlight extraction procedure is head part examination [13], [14]. 
Highlight choice is the most common way of wiping out unessential and excess elements (aspects) from the dataset 
during the preparation of machine learning algorithms. Include determination approaches can be arranged as solo, 
which don't need yield names, and managed, which use yield marks for highlight choice. Directed include choice 
envelops three techniques: the channel approach, the covering strategy, and the installing technique [11], [12]. 

Various machine learning techniques have been utilized to conjecture cardiovascular disorders. Soni et al. [15] compared 
several 

 

Fig. 1 Abstract concept of machine learning and deep learning. 
 

Machine learning algorithms, including decision tree (DT), Naïve Bayes 

(NB), K-Nearest Neighbours (K-NN), and Neural Network (NN), applied to the UCI Cleveland heart disease dataset. They 
discovered that DT displayed the most noteworthy accuracy at 89%. Dissanayake and Md Johar [16] inspected the 
effect of the component determination technique on machine learning for anticipating heart dieses utilizing the UCI 
Cleveland heart disease dataset. They broke down different component determination philosophies, including 
ANOVA, Chi-square, forward and in reverse choice, and Tether relapse. Accordingly, they utilized six machine learning 
classifiers: Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbours (K-
NN), Logistic Regression (LR), and Gaussian Naive Bayes (GNB). The element choice cycle improved forecast 
accuracy, accomplishing a most extreme grouping accuracy of 88.52% utilizing the DT classifier through the 
retrogressive component determination strategy. The use of machine learning methods, including Naive Bayes, Support 
Vector Machines, and Decision Trees, was analysed in [17] using ten times cross-approval on the South African 
coronary illness dataset containing 462 events. Naive Bayes (NB) yielded the most ideal results in heart disease 
detection, accomplishing an accuracy of 71.6%, sensitivity of 63%, and specificity of 76.16%. Kim et al. 
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[18] assessed the prescient adequacy of NN, SVM, CMAR, DT, and NBalgorithms for cardiovascular diseases 
utilising two datasets: ultrasound pictures of carotid arteries (CAs) and heart rate variability (HRV) got from ECG signals. 
The incorporated extricated highlights from the CAs+ HRV dataset accomplished better precision thought about than 
the singular elements of CAs and HRV. Thusly, the SVM and CMAR classifiers outperformed the others with 
correctness of 89.51% and 89.46% separately. 

On the other hand, deep learning, which is a subset of machine learning, freely distinguishes large features and patterns 
from datasets generated in the clustering step, eliminating the need for externalisation steps for light extraction and 
decision Figure 1 illustrates the concept of machine learning and deep learning. In deep learning, a model is 
constructed by collecting hidden neural networks. Convolutional Neural Network (CNN) is an in-depth study that 
has produced commendable results in image 

sequencing. 

Deep learning and pre-trained organizations can work with include extraction without requiring the retraining of the 
whole organization, empowering move learning and arrangement [19]. This article utilizes pre-trained networks, explicitly 
Squeeze Net [20] and Alex Net [21], as an exchange learning methodology to assess their viability in heart disease 
characterization and as component extraction for traditional machine learning techniques in heart disease 
classification. Additionally, a clever CNN model is proposed for foreseeing heart diseases utilizing ECG pictures, 
which is utilized for highlight extraction of the ECG pictures following the preparation of the recently proposed 
CNN model. 

The main contributions of this study are summarized as follows. 

1. The main contributions of this study are summarized as follows. 

2. The proposed CNN model achieves a success speed of 98.23%, which is best for learning on the continuous 
task [22] and inferior Squeeze Net and Alex Net, which came to 95.10%, 95.47%, and 96.79% difference. 

3. This is, supposedly, the subsequent review using the ECG pictures dataset of heart 
patients [23], which might persuade different specialists to examine elective procedures for 
recognizing cardiovascular disorders with this dataset. 

4. The transfer learning philosophy using Squeeze Net and Alex Net was inspected and stood out from the 
proposed model. 

5. The pre-trained networks Squeeze Net, Alex Net, and our recommended CNN model filled in as element 
extractors to apply the extricated highlights to common machine learning methods: SVM, K-NN, DT, RF, and NB. The 
ideal results were achieved by our proposed CNN model for the NB algorithm, with an accuracy pace of 99.79% 
recorded. 

6. The rest of this article is organized as follows. Segment II gives the writing audit. Segment III clarifies the 
techniques and the proposed CNN model utilized in this article. Area IV depicts the dataset and trial boundaries utilized. 
Area V presents the outcomes and conversations, while Segment VI completes the paper and offers future 
viewpoints. 

 

II. RELATEDWORKS 
 

Various examinations [24]-[27] have been embraced to consequently anticipate cardiovascular dieses by machine 
learning and deep learning techniques, utilizing ECG information in computerized or picture designs. 

Bharti et al. [28] assessed machine learning and deep learning techniques on the UCI heart disease dataset to foresee two 
categories. The deep learning algorithm achieved the best accuracy pace of 94.2%. The design of their deep 
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learning model has three completely associated layers: the main layer contains 128 neurons, prevailed by a dropout layer 
with a pace of 0.2; the subsequent layer comprises of 64 neurons, trailed by a dropout layer with a pace of 0.1; and the third 
layer includes 32 neurons. The ML procedures utilizing highlight determination and anomaly discovery achieved the 
accompanying accuracy rates: RF at 80.3%, LR at 83.31%, K- NN at 84.86%, SVM at 83.29%, DT at 82.33%, and 
XGBoost at 71.4%. The concentrate in [29] uncovered that deep learning is a more exact and helpful method for 
different clinical issues, including expectation. Deep learning strategies will displace customary ML dependent on 
include designing. Kiranyaz et al. [30] proposed a convolutional neural network (CNN) including three layers of a versatile 
execution of one-layered (1-D) convolutional layers. This organization was prepared on the MIT-BIH arrhythmia 
dataset to arrange broad ECG information streams. They accomplished accuracy paces of close to 100% and 97.6% in 
the grouping of ventricular ectopic beats and supraventricular ectopic beats, separately. The concentrate in [31] 
presented a CNN of three 1-D convolutional layers, three max-pooling layers, one completely associated layer, and one 
softmax layer. The channel aspects for the underlying two convolutional layers were laid out at 5, and a step of 2 was 
utilized for the initial two max-pooling layers. They accomplished a grouping accuracy of 92.7% for ECG pulses using 
the MIT-BIH arrhythmia dataset. 

Khan et al. [22] utilized an transfer learning philosophy using the pre-trained single shot detector (SSD)- MobileNet-v2 
[32] to recognize cardiovascular disease from an ECG pictures dataset of heart patients by foreseeing four head 
heart irregularities: abnormal heartbeat (AH), myocardial infarction (MI), history of myocardial infarction 
(H.MI), and normal person (NP) classes. The text size was adjusted, and 12 angles of each ECG image were 
brightened as a preprocessing method. The SSD is used to analyse and characterize materials in the isolation phase. 
The data set was divided into 80% for training and 20% for testing. A batch size of 24, 200,000 preparation cycles and 
a learning speed of 0.0002 were used to solve the model. The preparation period stretched to about four days. An accuracy 
rate of 98.3% was obtained for the MI section. 

Rahman et al. [33] introduced a deep CNN transfer learning philosophy to foresee Coronavirus and four critical heart 
inconsistencies using ECG pictures. The dataset had five classifications: Coronavirus, AH, MI, H. MI, and NP. Six 
unmistakable pre-trained deep convolutional neural network, in particular ResNet18, ResNet50, ResNet101, 
DenseNet201, inception V3, and MobileNet-v2, were utilized for characterization. Gamma revision, picture 
scaling, and z-score standardization were utilized as arrangement 

strategies for the ECG pictures. Thusly, in two-class characterization (Coronavirus and ordinary) and three-class 
arrangement (Coronavirus, typical, and extra heart oddities), DenseNet201 outperformed different organizations 
with accuracy paces of 99.1% and 97.36%, separately. In the five-class order, Origin V3 outperformed different 
organizations with an accuracy of 97.83%. 

Buddy et al. [36] presented a deep CNN transfer learning approach using pre-trained DenseNet for arrhythmia 
classifications (AH) got from ECG signals in the PTB and MIT-BIH arrhythmia datasets, which were changed into 
2-D pictures. Due of the dataset's unevenness, an information increase strategy was executed. The DenseNet model 
was chosen because of its capacity to address the disappearing angle issue in deep organizations through the execution 
of thick associations among layers. Their model was assigned as CardioNet. The qualities for precision, recall, and F1 
score were 98.62%, 98.68%, and 98.65%, separately. 

Avanzato and Berritelli [37] presented a deep convolutional neural network consisting of four 1-D convolutional 
levels to predict three classifications of cardiovascular anomalies using ECG signals from the MIT-BIH arrhythmia 
dataset at each convolutional level cluster standardization level ,  rectified linear unit (ReLU) initial capacity, and was the 
maximum controlled pooling layer with a channel (bit) size of 4. The bottom convolutional layer had a channel size of 80, 
while subsequent layers used a channel size of 4.   

This engineering utilized a normal pooling layer related to a softmax layer for grouping, as opposed to using totally 
associated layers. This model achieved an accuracy level of 98.33%. 
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They call Acharya. [38] fostered a deep convolutional neural network consisting of four-layer convolutional  

 

 

Fig. 2 Example of a convolution operation. 
layers and three fully connected for myocardial localized lesion location using ECG signals from the PTB dataset In 
this example the cracked rectifier direct unit (Defective ReLU ) and uses the actuation power layer. Each convolutional 
layer was a maximum pooling layer with channel size 2 and step 2. In that order, the channel sizes of the convolutional 
layers are 102, 24, 11, and 9. The 

number of neurons in the fully connected layers is 30, 10, 2 different. A softmax layer followed the last fully connected layer. 
They obtained 93.53% and 95.22% general accuracy speeds for ECG shots with and without noise removal, 
respectively. 

Naz and so on. [39] converted the ECG stimuli into 32 × 32 pairs of images. Their method was tested using the MIT-
BIH dataset with pre- trained CNN images Alex Net, VGG19, and Commencement V3 to predict myocardial 
infarction The move gain was used to remove features from sample previously reared strains were included. As a 
result, SVM and K- NN features techniques were used for the parallel system. Using SVM, an accuracy of 97.60% was 
obtained. 

 

 

III.METHODS 

A. Convolutional Neural Networks (CNN) 

CNN is a special type of deep artificial neural network designed for image sequencing and processing in "deep 
learning" The information image measures 227 × 227 × 3, which means that the width and height are 227 pixels , where 
the depth (path) is 3. An important capability of CNNs is to extract important points from the input image using sigmoid or 
softmax initialization capabilities to generate the expected Layer convolution method uses convolutional layers on the 
info information, using a channel or part to create a component map Convolution is executed by traversing info across 
channel Framework duplication is performed at each point, and so are the results Component maps accumulate. Figure 2 
illustrates the critical diagram of the convolution function for the depth contribution. 
 

Fig. 3 Example of 2 × 2 max-pooling with stride = 2. 
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The convolution cycle shows linearity. In order to detect nonlinearity and its consequences, the convolution layer is 
controlled by the actuation capacity level, e.g., ReLU or its variant. Following the convolution layer, the pooling layer, e.g. 
Figure 3 illustrates the critical diagram of maximum pooling for a single depth contribution. 

B. Pre-trained Deep Learning Models  

Pre-trained deep neural networks can work with transfer learning, highlight extraction, and arrangement. This article utilizes 
low-scaled SqueezeNet and AlexNet pre-trained CNN organizations, reasonable for exrecution on a solitary central 
processor, for transfer learning and component extraction.The transfer learning strategy is oftentimes utilized with pre-
trained deep neural networks applied to a novel dataset. Thusly, it could get benefits from the pre-trained network that 
has gained a scope of properties adaptable to similar to occupations. Most pre-trained networks have been prepared on 
north of 1,000,000 photographs and can classify pictures into 1000 article types. In carrying out the transfer learning 
technique, the terminal layers of the pre-trained network are subbed with new layers to secure the unmistakable elements of 
the novel dataset. In this manner, the model goes through tweaking by being prepared on a novel dataset with 
characterized boundaries, trailed by an assessment of its exhibition on a different test dataset. Pre-trained deep neural 
networks can act as an element extraction instrument, killing the requirement for tedious preparation endeavors. This article 
uses highlights taken from pre trained organizations to prepare ordinary machine learning classifiers, including SVM, K-
NN, DT, RF, and NB. The usage of pre-trained networks is clarified in the ensuing areas. 

C. Proposed CNN Architecture 
The proposed CNN model also contains six 2-D convolutional layers, three fully connected layers, three max 
pooling layers, eight faulty ReLU layers, eight group standardization layers, five dropout layers, depth 
connection layers two, and softmax layer the total number of elements is 38. The structure of the proposed 
model is shown in Figure 4. 
The proposed CNN model has two branches that aim to include more representatives: the stack branch and the 
whole branch. The recommended CNN model requires a 227×227×3 dimensional information map. The info 
image enters two branches at the same time. 
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Stack part of three superimposed 2-D 3×3 convolutional layers. Each of these two-layered convolution layers is 
dominated by a split ReLU layer and a group normalization layer. 
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Fig. 4 Representation architecture of the proposed CNN mod 

 

 

Stricter pooling layer. The LeakyReLU layer uses a leakyReLU rule capacity of size 0.1. Unlike ReLU, leakyReLU is 
slightly skewed in the negative position, which may preclude the issue of idle neurons [46]. The group 
normalization layer normalizes the inputs of each subgroup, serves to provide faster model preparation and improve 
accuracy. The maximum pooling layer implements the maximum pooling process on the component map by finding the 
strongest component in the location of the channel this directs the reduction of the spatial components of the element 
map, consequently comes with reducing the size of the boundaries and the computational cost of modelling. The 
recommended CNN model utilizes max-pooling layers with a channel size of 6×6 and a step of 3. This branch utilizes 
64, 128, and 224 channels to remove deep elements from the information in the first, second, and third convolutional layers, 
separately. The result aspects at the finish of the stack branch are 2 × 2 × 224. 

The underlying layer in the total engineering of our proposed CNN model is a totally associated layer, which is reflected 
in its assignment. In our idea, the totally associated layer contains 16 neurons. In any case, every node in the 
connecting layer is connected to every node in the first layer. This is the veining of the convolution layer in contrast to the 
former clear veins in which the convolutional channel segments are not set in stone While most of boundaries in the CNN 
start from the completely associated layers, the computational requests of the convolutional layer need altogether more 
noteworthy memory utilization. A completely associated layer is prevailed by a leakyReLU layer, a bunch convolutional 
layer, and a dropout layer, which moderate overfitting and improve the model's speculation limit. 

leaky ReLU: scale=0.1, batch normalization: Mean Decay=0.1, Variance Decay=0.1, Epsilon=0.00001, total 
number of learnable parameters=3430308 
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Figure 4 outlines that the two convolutional layers, assigned as conv04 and conv05, are situated at a similar level resulting 
to the completely associated layer block to work with the extraction of greater elements. 

Conv04 is a 32 2×2 convolutional layer with a step of 1 and cushioning of 1, while conv05 is a 64 3×3 convolutional 
layer with a step of 2 and cushioning of 2. The element maps from these two convolutional layers are connected to 
yield a component guide of aspects 2 × 2 × 96. Following the connection of elements, a dropout layer is carried out to relieve 
the impact of connected includes and forestall overfitting. 

The results delivered by the two branches are consolidated to frame a component guide of aspects 2×2×320. A 
dropout layer is in this manner consolidated to moderate the model's overfitting. A 1×1 convolutional layer with 256 
channels is integrated to improve the model's nonlinearity and lessen the profundity or amount of component maps, 
consequently bringing down computational costs. 

 

 

Fig. 5. Schematic of using the proposed CNN model for ECG images of cardiac patients’ classification. 

 

To improve the classification process, a fully connected layer consisting of 512 nodes is combined. The obtained results 
include a fully connected layer with four nodes, as determined by the number of clusters to be grouped, followed by a 
softmax layer to estimate the overall result. 

 

Figure 5 shows the plan for utilizing the proposed CNN model to 

characterize ECG pictures of heart patients. The provided photographs go through preprocessing by trimming, scaling, 
and expansion. The pre-processed 

Preprocessing. As can be seen in Fig.6, the ECG images in the dataset contain Header and footer information that 
have no photographs are accordingly put away in the picture datastore. The proposed model is shown in Fig. 6 Samples 
from the electrocardiogram pictures dataset. (a) NP. (b) AH. (c) MI. (d) H. MI. 

using the predetermined preparation boundaries and the ECG pictures contained in the picture datastore. The model gains 
elements and alters its movable boundaries in like manner. Endless supply of preparing, the model is ready to assess ECG 
pictures for the grouping of cardiovascular oddities into one of four classifications: NP, AH, MI, and H. 
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III. EXPERIMENTS 
 

  A. ECG Images Dataset of Cardiac Patients 

  The predetermined methodologies were assessed on the ECG Pictures dataset of cardiovascular patients [23]. This 
dataset has 928 particular patient records ordered into four kinds, as outlined in Table II. The four classes are NP, AH, 
MI, and H. Figure 6 delineates a few examples from the dataset. An NP is a person healthy with no heart issues. An 
arrhythmia happens when the heart's electrical driving forces are exorbitantly fast, unnecessarily sluggish, or 
sporadic, bringing about an unpredictable heartbeat. Myocardial dead tissue, usually referred to as cardiovascular 
failure, happens when the blood stream in the coronary conduit reduces or stops, bringing about injury to the heart 
muscle. The people with an H. MI have of late recovered from myocardial localized necrosis or respiratory failure. 

 

B. Experimental Settings 

 

The examinations used MATLAB 2021b on an Intel Center i7-4510U computer processor working at 2.00 
GHz with 8GB of RAM, and all photographs were trimmed to underscore the huge highlights, as represented in Fig. 
7. Moreover, all ECG pictures were scaled to a uniform goal of 227×227 with three channels (RGB) before model 
preparation. 

Information increase. Information increase was utilized on the dataset [47] to improve the heartiness and exactness of 
the made model. It upgrades the dataset's picture amount and mitigates the results of preparing the model on an 
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imbalanced dataset. Three increase strategies — revolution, flipping, and interpretation — were utilized on the predetermined 
dataset [48]. This increased the assortment to a sum of 4,700 photographs. 

Boundaries for deep getting the hang of preparing. Because of the computational power of hyperparameter 
improvement, all preliminaries used the preparation settings determined in Table III. The Adam enhancer is used to 
prepare the model for 16 ages with a minibatch size of 128. By the by, considering that the underlying learning rate (LR) is the 
principal hyperparameter, a few LR values were utilized in the preliminaries, as point by point in the ensuing segment. In 
light of these settings, the cycles per age absolute 29, and the all-out emphases for model preparation add up to 464. 
Fivefold cross-approval was utilized to accomplish solid outcomes in testing and assessing the model. The dataset is 
divided into five portions, with four fragments dispensed for preparing and one section assigned for testing (3760 
pictures for preparing and 940 pictures for testing). 

Subsequently, five significant contrasts among preparing and testing were executed. The results are the mean of the five 
folds. 

Its compute capability is 2.1 and it is not supported by MATLAB 2021b. Hence, all experiments were run on a single 
CPU. 

TABLE IV 
 

 

Fig. 8.Semantic of the confusion matrices for four class’s results. 

 

 

V. RESULTS AND DISCUSSIONS 

 

Accuracy, precision, recall, F1 score, and training and testing lengths were utilized for execution investigation. The 
estimations get from the assessment of information inside a disarray framework. Table V outlines the meanings of the 



International Journal of Innovation Studies 9 (1) (2025) 

  

165 
 

measurements got from the disarray matrix. Accuracy is both the range of parameters and the number of parameters 
expected as a judge, communicated as a quantity. Memory refers to the extent to which accurately anticipated positive 
intentions are theoretically complete in the actual positive category. Precision refers to the extent to which expected 
positive mood accuracy deviates from mood in the predicted positive category. The F1 score satisfies the weighted 
normal of Recall and Precision. Thus, it involves both false negative values and false positive thinking. 

Figure 8 outlines the semantics of the disarray lattice for four-class datasets, explicitly the ECG pictures dataset of 
heart patients. The exploratory exhibition measurements are gotten from the situations introduced in Table IV. 

A. Results of Transfer Learning and Proposed CNN Model 

The high-level plans of the pre-trained networks Squeeze Net and Alex Net were utilized to carry out the transfer learning 
philosophy in our exploration. Both were at first prepared for the arrangement of 1000 picture classes. To adjust these 
organizations for distinguishing the new assortment of ECG pictures in the dataset, we alter the last layers of these 
models to line up with the new errand. In Alex Net, the last completely associated layer is subbed by another 
completely associated layer of indistinguishable aspects. 

Here, the total number of layers in the network was counted, not even the convolutional layers and dense layers. 

 

TABLE VI 

CALCULATED PERFORMANCE MEASUREMENTS FOR SQUEEZE-NET, ALEXNET, AND THE 
PROPOSED CNN MODEL FOR DIFFERENT RL VALUES 

 

LR: initial learning rate, A.: accuracy, R.: recall, P.: precision, F1: F1 score, T1: training time, T2: testing time. 

The bold values indicate the best results. TABLE VII 

PERFORMANCE MEASUREMENTS VALUES OBTAINED FOR EACH FOLD OF THEPROPOSED 
MODEL 
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  The bold values indicate the average of the five folds. 

The size of the neurons is related to the size of our expected clusters, apparently four. Since SqueezeNet completely 
removes overlapping layers, we replace a final convolutional layer, which distinguishes 1000 classes, with another 
convolutional layer using 4 1×1 channels In the two pre-trained grids which is used, a new system layer is populated for 
the previous one, resulting in terms of probabilities registered by the softmax layer Objects in the network a is 
previously trained in and our proposed CNN is introduced in Table V. 

Table VI presents the performance measures of the pre-trained models (SqueezeNet and AlexNet) used in the 
change learning philosophy, which are close to our proposed CNN model for the ECG image dataset. Specific learning 
rate (LR) values were used for each sample: 0.01, 0.001, and 0.0001. The most effective improvement rate, with a 
specific accuracy of 98.23%, was achieved by our proposed CNN model at a learning speed of 0.0001. Table VII 
presents the complete evaluation of the proposed model. 

 

Fig. 9. Training Progress for our proposed CNN model on the ECG images dataset in fold-1 (LR: 0.0001 and other 
hyperparameters are as in Table III). 
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TABLE VIII 
 

 

 

NP: normal person, AH: abnormal heartbeat, MI: myocardial infarction, H.MI: history of myocardial Infarction 
classes. 

The typical accuracy rate for the proposed CNN model shows reliably high outcomes notwithstanding varieties in the RL 
values. On the other hand, the pre-trained SqueezeNet and AlexNet models exhibit less than ideal execution at transfer 
learning paces of 0.01 and 0.001, despite the fact that give barely further developed results while the learning rate is 
changed in accordance with 0.0001. This is because of the way that, in move learning, the loads of pre-trained models are 
not procured starting from the earliest stage. Subsequently, to forestall entanglement in nearby minima, it is fitting to start 
with a lower learning rate, for example, 0.0001, while utilizing move learning systems. 

The typical accuracy rates are 96.79% for AlexNet and 95.43% for SqueezeNet, with a learning rate of  0.0001. 
Alternately, the proposed CNN model exhibits better execution analysed than different models with respect to time 
proficiency, as outlined in Table VI. Notwithstanding SqueezeNet having the least boundaries and being a completely 
convolutional network, it has the most unfortunate outcomes with respect to time effectiveness. The broad algorithms in the 
convolutional layers bring about delayed handling times, especially when executed on a solitary computer 
processor stage. 

Figure 9 delineates the preparation progression of our proposed CNN model on the ECG pictures dataset in overlap 1 
(learning rate = 0.0001). The accuracy rate logically improves with each ensuing reiteration. 

Besides, the misfortune decreases step by step as the cycle propels, at last coming to 0.0043. 

The disarray frameworks created for each overlay following the preparation of our proposed CNN models with a learning 
pace of 0.0001 on the ECG pictures dataset are shown in Fig. 10. 

As far as anyone is concerned, the sole distribution in the writing that uses the indistinguishable data and arranges the 
four classes is the review 

referred to in [22], which has been tended to in Segment II. The dataset was partitioned into 80% for training and 20% 
for testing in [22]. 
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Fig. 10. Confusion matrices of the proposed CNN model for classification of heart diseases in the 
ECG images dataset for each fold (RL: 0.0001 and other hyper-parameters are as in Table III). 

TABLE IX 
PROPERTIES OF THE EXTRACTED FEATURES FROM PRE-TRAINED NETWORKS 

 

The model was prepared with a group size of 24 and a learning rate of 0.0002. Their preparation span broadened almost 
four days. Their distribution demonstrates a precision rate of 98.3% for class MI, but our proposed CNN model 
outperforms this with an accuracy pace of 99.4% for a similar class. Table VIII compares the discoveries from [22], where 

the accuracy paces of each class were gotten from their disarray network, with our proposed CNN model. 

B. Results of Using Pre-trained Deep Learning Models As a Feature Extractor. 

 
The pre-trained SqueezeNet and AlexNet networks were used to extract the features of the ECG images in the 
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dataset. As well 
 

 
                    The bold values indicate the best results. 
The pre-trained SqueezeNet and AlexNet models were utilized to separate highlights from the ECG pictures in the 
dataset. Moreover, our proposed CNN model filled in as an element extractor, and the results were looked at. Deep 
learning's capacity takes into consideration the extraction of picture highlights without requiring the re-preparing of the 
whole organization. The organizations not entirely settled through the forward spread of information pictures to the 
assigned component layer. The initiation include layers used are conv10 (layer 64), fc7 (layer 20), and fc02 (layer 32) 
for SqueezeNet, AlexNet, and our proposed CNN model, separately. Table IX outlines the properties of the 
recovered highlights. The recovered highlights were used to prepare the machine learning algorithms: SVM, k-NN, 
DT, RF, and NB. 

The presentation measurements are figured and shown in Table X. The best result was accomplished with an accuracy, 
recall, precision, and F1- score of 99.79% involving the NB strategy related to our recommended CNN model as the 
component extractor. The SVM algorithm accomplished accuracy paces of 99.47%, 97.87%, and 97.66% while 
using our recommended CNN model, SqueezeNet, and AlexNet, individually, for highlight extraction. The ideal 
outcomes for all exhibition measurements were accomplished using our proposed CNN model as the element 
extractor. In the examination of  SqueezeNet and AlexNet, we almost accomplished unrivaled accuracy rates for the 
SVM, RF, and NB algorithms using highlights removed from SqueezeNet contrasted with those got from AlexNet. 
In any case, the preparation and testing lengths for SqueezeNet-based strategies were stretched out attributable to 
the expanded measure of the removed elements. Regardless of having the littlest separated highlight size, our 
recommended CNN model achieved prevalent outcomes across all exhibition measurements, as shown in Table X. 
This shows that our proposed model is intended to become familiar with the fundamental parts of the ECG pictures 
dataset. 

Subsequently, the recommended model offers unrivalled accuracy rates as 

 

CALCULATED PERFORMANCE MEASUREMENTS FOR MACHINE LEARNING ALGORITHMS THAT USE PRE-TRAINED 
NETWORKS SQUEEZENET, ALEXNET, 
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well as decreased computational costs compared with existing writing. The proposed model could yield further 
developed results assuming enhancement algorithms are utilized to find out the upsides of its hyperparameters. 

 

 
VI. CONCLUSION 

This examination presents a lightweight CNN-based model for ordering four head cardiovascular irregularities: AH, 
MI, H. MI, and NP, using a public ECG picture dataset of heart patients. The exploratory outcomes demonstrate that 
the proposed CNN model achieves extraordinary execution in cardiovascular disease order and can additionally act 
as an element extraction device for customary machine learning classifiers. 

The recommended CNN model fills in as a helper apparatus for doctors in the clinical space to recognize heart 
disease from ECG pictures, subsequently evading the human technique that outcomes in mistakes and 
postponements. 

In future exploration, enhancement methods might be utilized to determine ideal qualities for the hyperparameters of the 
proposed CNN model. The 

proposed approach can likewise be used for anticipating a few different kinds of issues. The recommended model 
is ordered as a low-scale deep learning technique in view of its number of layers, boundaries, and profundity. Thus, a 
study on the applicability of the proposed model for segmentation in today’s online landscape can be explored 
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