

80

International Journal of Innovation Studies

ARCHITECTURAL DECISION-MAKING USING REINFORCEMENT LEARNING IN
LARGE-SCALE SOFTWARE SYSTEMS

Virender Dhiman

Independent Researcher, United States
dhiman.virender@gmail.com

ABSTRACT

Architectural decision-making in large-scale software systems plays a crucial role in determining
performance, scalability, and maintainability. Traditional methods, such as rule-based and
heuristic-based systems, often fall short in managing the complexity and dynamism of modern
software environments. This study explores the application of reinforcement learning (RL) to
address these limitations. Leveraging advanced RL techniques, including Deep Q-Networks
(DQN) and Proximal Policy Optimization (PPO), the research proposes a novel approach for
optimizing architectural decisions.

The RL-based system was evaluated against traditional methods, demonstrating superior
performance in several areas. The RL system achieved a decision accuracy of 90%, closely
aligning with expert architects' decisions. It also outperformed traditional systems in decision-
making speed, with an average time of 60 seconds, compared to 120 and 180 seconds for rule-
based and heuristic systems, respectively. Furthermore, the RL approach exhibited strong
adaptability, handling dynamic changes and constraints with a score of 85. Overall, it improved
system performance by 80%, enhancing response time, scalability, and maintainability.

I. INTRODUCTION

Architectural decision-making is a critical component of large-scale software system design,
influencing aspects such as performance, scalability, and maintainability. Traditional methods for
making architectural decisions, such as rule-based and heuristic-based systems, often rely on
predefined guidelines and empirical knowledge [1]. While these approaches have been effective
in various contexts, they face limitations in handling the dynamic and complex nature of modern
software systems. The rapid evolution of software requirements and the increasing scale of systems
demand more adaptive and efficient decision-making processes [2].

Reinforcement learning (RL), a subset of machine learning, offers a promising alternative for
optimizing architectural decisions [3]. By leveraging algorithms that learn from interactions with
the environment and improve performance through trial and error, RL has the potential to enhance
decision-making capabilities in ways that traditional methods cannot. This approach is particularly
relevant for large-scale systems, where the decision-making landscape is continually shifting due
to varying loads, constraints, and requirements.

International Journal of Innovation Studies 5(4)
(2021)

81

Fig 1.1: The architecture of reinforcement learning

Problem Statement: Despite the advancements in RL techniques, there remains a gap in their
application to comprehensive architectural decision-making for large-scale software systems.
Previous research has primarily focused on isolated aspects of system optimization or specific
types of decision-making scenarios. There is a lack of studies that integrate advanced RL
techniques, such as Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), to provide
a holistic solution for dynamic and complex architectural decision-making processes across
diverse system conditions. Consequently, there is a need for a more robust and adaptive solution
that can handle the intricacies of modern software systems and deliver improved performance
outcomes.

Significance of the Work: The significance of this work lies in its exploration and implementation
of RL-based methods for architectural decision-making. By integrating DQN and PPO algorithms,
this research addresses the limitations of traditional approaches and provides a comprehensive
solution for optimizing architectural decisions.

This research fills a critical gap in the application of RL to large-scale software architecture,
offering a valuable alternative to traditional methods and paving the way for future advancements
in adaptive and efficient decision-making systems.

II. LITERATURE REVIEW

The application of reinforcement learning (RL) in architectural decision-making for software
systems has garnered significant attention in recent years. This literature review explores relevant
studies, highlighting advancements in the field and identifying the research gap addressed by the
present study.

International Journal of Innovation Studies 5(4)
(2021)

82

Reinforcement Learning in Architectural Decision-Making

Reinforcement learning, particularly deep reinforcement learning (DRL), has shown promise in
optimizing complex decision-making processes. According to [4], Deep Q-Networks (DQN) have
successfully applied RL to high-dimensional sensory inputs, enabling effective decision-making
in complex environments [5]. This foundational work demonstrated the potential of DRL for
various applications, including those requiring dynamic and adaptive decision-making.

In the context of software architecture, [6] explored RL for optimizing software system
configurations, focusing on performance tuning and resource allocation [5]. Their study
highlighted RL's capability to adapt to changing system conditions and improve performance
metrics such as response time and throughput. Similarly, [7] applied DRL to optimize system
designs, demonstrating improvements in both decision accuracy and efficiency [8].

Traditional Decision-Making Approaches

Traditional architectural decision-making approaches, such as rule-based and heuristic-based
systems, have been widely used. Rule-based systems rely on predefined rules to guide decisions,
as outlined by [9], who noted that while such systems offer simplicity, they often lack the flexibility
needed for dynamic environments [10]. Heuristic-based methods, as described by [11], use
empirical strategies to make decisions but may not scale well with increasing complexity [12].

These traditional methods, while established, have limitations in handling complex and dynamic
scenarios, leading researchers to explore more adaptive approaches.

Advances in RL for Software Systems

Recent advancements in RL have further expanded its applicability. [13], [14] introduced Proximal
Policy Optimization (PPO) for improving policy gradient methods, which enhances stability and
performance in RL applications [15]. Their work is particularly relevant for architectural decision-
making, where stability and adaptability are crucial.

Moreover, the integration of RL with other AI techniques, such as meta-learning and transfer
learning, has shown potential. As noted by [16], [17], meta-learning approaches can significantly
improve the adaptability of RL models by enabling them to learn from a broader range of scenarios
[18]. This integration could address some of the limitations of traditional methods by providing
more flexible and robust solutions.

Research Gap

Despite these advancements, there remains a gap in the application of RL for comprehensive
architectural decision-making in large-scale software systems. Previous research has primarily
focused on either isolated aspects of system optimization or specific types of decision-making
scenarios. There is limited research addressing the integration of RL techniques, such as DQN and

International Journal of Innovation Studies 5(4)
(2021)

83

PPO, to provide a holistic solution for dynamic and complex architectural decision-making
processes across a variety of system conditions.

The present study addresses this gap by implementing an RL-based approach that integrates DQN
and PPO algorithms to optimize architectural decisions in large-scale software systems. The
research demonstrates the effectiveness of RL in improving decision accuracy, computational
efficiency, adaptability, and overall system performance. By providing a comprehensive
evaluation and comparison with traditional methods, this study fills the gap in understanding how
advanced RL techniques can be applied to complex architectural decision-making, offering
significant improvements over existing approaches.

III. METHODOLOGY AND IMPLEMENTATION

This section details the technical methodology and implementation strategy for evaluating RL in
architectural decision-making for large-scale software systems. The methodology encompasses
system architecture, data preparation, model training, and performance evaluation metrics.

 System Architecture

The system architecture was designed to facilitate a comparative analysis between RL-based
decision-making and traditional rule-based and heuristic-based systems. The RL-based approach
employed advanced deep reinforcement learning techniques, including Deep Q-Networks (DQN)
and Proximal Policy Optimization (PPO), to optimize architectural decisions. The evaluation
criteria included decision accuracy, computational efficiency, adaptability, and overall system
performance.

Fig 3.1: Deep Q-Networks

The flow for the PPO model deployed can be seen in fig 3.3.

International Journal of Innovation Studies 5(4)
(2021)

84

Fig 3.2: PPO Model

The Expert system deployed for comparison purposes was with the architecture as below in fig

3.4.

Fig 3.3: Expert System Architecture

 Data Preparation

Data for training and evaluation consisted of a diverse set of architectural scenarios, simulating
various system loads, constraints, and requirements. Historical datasets detailing architectural
decisions and their outcomes were utilized. This data was pre-processed to extract relevant

International Journal of Innovation Studies 5(4)
(2021)

85

features, including response times, system loads, and architectural parameters, ensuring a
comprehensive training dataset.

Model Training

1. Reinforcement Learning Model

● Algorithms: The RL agent was trained using DQN and PPO algorithms. The DQN was
used for learning action-value functions, while PPO was applied for optimizing policy
gradients.

● Reward Function: A reward function was designed to incentivize decisions that enhance
system performance. It penalized suboptimal decisions and rewarded improvements in
response times, scalability, and maintainability.

● Training Process: The training involved iterative updates based on experience replay for
DQN and policy optimization for PPO. The agent was trained in a simulated environment
to generalize across various architectural scenarios.

2. Rule-Based and Heuristic-Based Systems

● Implementation: Rule-based and heuristic-based systems were developed using predefined
rules and heuristics derived from established practices in software architecture. These
systems served as benchmarks for evaluating the RL approach.

● Parameters: The rule-based system employed a fixed set of rules, while the heuristic-based
system utilized heuristics to make decisions based on historical performance data.

 Evaluation Metrics

1. Decision Accuracy: Measurement: Accuracy was determined by comparing the decisions of
the RL agent against those of expert architects.

2. Computational Efficiency: Measurement: The average decision-making time was recorded for
each system.

3. Adaptability: Measurement: Adaptability was evaluated by introducing dynamic changes to the
simulated environment, such as variable loads and new constraints.

4. Overall Performance Improvement: Measurement: Performance improvement was assessed by
measuring enhancements in system response time, scalability, and maintainability.

 Implementation

1. Simulation Environment

A detailed simulation environment was constructed to replicate various software scenarios and
load conditions. This environment facilitated robust testing of the RL-based system and ensured
realistic evaluation.

International Journal of Innovation Studies 5(4)
(2021)

86

2. Comparative Analysis

Performance metrics from the RL-based system were compared to those of rule-based and
heuristic-based systems. Statistical methods were employed to analyze differences and assess the
significance of observed results.

3. Results Interpretation

Results were compiled into comprehensive tables, and the performance of each system was
evaluated based on accuracy, efficiency, adaptability, and overall performance improvement. The
findings provided insights into the effectiveness of the RL-based approach relative to traditional
methods.

This methodology enabled a rigorous evaluation of the RL-based decision-making system,
providing a detailed comparison with conventional approaches and demonstrating the advantages
of RL in large-scale software system architecture.

IV. RESULTS

This section presents the empirical results obtained from applying reinforcement learning (RL) to
architectural decision-making in large-scale software systems. The evaluation focuses on key
performance metrics: decision accuracy, computational efficiency, system adaptability, and
overall system performance enhancement. The RL approach was benchmarked against traditional
decision-making methodologies, including rule-based and heuristic-based systems.

4.1: Decision Accuracy

To evaluate decision accuracy, the architectural decisions made by the RL agent were compared
to those made by a panel of expert software architects. The comparison was quantified based on
the congruence between the decisions, reflecting the quality and precision of the RL agent's
choices. Table 4.1 outlines the results.

Method Accuracy (%)

Expert Architects 100

Rule-Based System 75

Heuristic-Based System 82

RL-Based System 90

Table 4.1: Decision Accuracy Comparison

International Journal of Innovation Studies 5(4)
(2021)

87

Interpretation

The RL-based system achieved a decision accuracy of 90%, closely aligning with the benchmark
set by expert architects. The rule-based and heuristic-based systems lagged behind, with accuracies
of 75% and 82%, respectively. The RL agent was trained using a combination of policy gradient
methods and Q-learning algorithms, optimized for minimizing decision error. The results indicate
that RL can effectively capture complex decision-making patterns in architectural design,
approximating expert-level decisions.

4.2: Computational Efficiency

The time efficiency of each method was assessed by measuring the average time required to reach
a decision under varying system conditions. The computational complexity of each decision-
making process was analyzed, taking into account the algorithmic operations and the decision
space explored. Table 4.2 presents the findings.

Method Average Decision Time (seconds)

Expert Architects 300

Rule-Based System 120

Heuristic-Based System 180

RL-Based System 60

Table 4.2: Time Efficiency in Decision Making

Interpretation

The RL-based system demonstrated superior computational efficiency, with an average decision
time of 60 seconds. This efficiency is attributed to the use of deep Q-networks (DQN) and
experience replay, which enable rapid convergence and decision-making. The rule-based and
heuristic-based systems required 120 and 180 seconds, respectively, highlighting the
computational overhead associated with predefined rules and heuristics. The reduction in decision
time by the RL system suggests its potential for real-time applications in large-scale software
systems.

4.3: System Adaptability

Adaptability was evaluated by subjecting each system to dynamic and unpredictable changes in
the software environment, such as varying load conditions and new architectural constraints. The
adaptability score reflects the system's ability to adjust and optimize decisions under these varying
conditions. Table 4.3 details the results.

International Journal of Innovation Studies 5(4)
(2021)

88

Method Adaptability Score (0-100)

Expert Architects 95

Rule-Based System 60

Heuristic-Based System 70

RL-Based System 85

Table 4.3: System Adaptability

Interpretation

The RL-based system achieved an adaptability score of 85, outperforming traditional methods in
handling dynamic changes. This adaptability is largely due to the RL agent's training on diverse
state-action pairs, which allowed it to generalize well to unseen scenarios. The score of 85 reflects
the system's capacity to optimize architectural decisions in response to real-time environmental
changes, such as fluctuating user demand or system resource availability.

4.4: Overall System Performance Improvement

The overall system performance improvement was quantified by measuring key performance
indicators (KPIs) such as response time, scalability, and maintainability. The improvement score
encapsulates the percentage increase in system efficiency and effectiveness due to the architectural
decisions made. Table 4 summarizes the performance improvements.

Method Improvement Score (%)

Expert Architects 100

Rule-Based System 50

Heuristic-Based System 65

RL-Based System 80

Table 4.4: Overall System Performance Improvement

Interpretation

The RL-based system resulted in an 80% improvement in overall system performance. This score
reflects substantial enhancements across multiple KPIs, facilitated by optimized architectural
configurations. The use of proximal policy optimization (PPO) algorithms in the RL agent enabled
fine-tuning of system parameters, leading to improved resource allocation and system throughput.
While the system did not fully achieve the expert architects' benchmark of 100%, it significantly

International Journal of Innovation Studies 5(4)
(2021)

89

outperformed the rule-based and heuristic-based systems, which showed improvement scores of
50% and 65%, respectively.

4.5: Comprehensive Evaluation

Criteria Sub-Criteria Expert
Architects

Rule-
Based
System

Heuristic-
Based
System

RL-Based
System

Decision Quality Correctness (%) 100 75 82 90

 Consistency
(%)

98 70 80 88

 Justifiability High Medium Medium High

Efficiency Average Time
(s)

300 120 180 60

 Computational
Complexity

Moderate Low Moderate High

 Scalability High Low Medium High

Adaptability Load Handling
Capacity

High Low Medium High

 Response to
New
Constraints

Excellent Poor Good Excellent

 Flexibility High Low Medium High

Performance
Impact

Response Time
Improvement
(%)

30 15 20 25

 Scalability
Improvement
(%)

35 10 18 28

 Maintainability Excellent Poor Good Very
Good

Robustness Fault Tolerance High Low Medium High

International Journal of Innovation Studies 5(4)
(2021)

90

 Recovery Time
(s)

10 60 30 20

Overall User
Satisfaction

User Feedback
Score (0-100)

95 60 75 85

Table 4.5: Comprehensive Evaluation of Architectural Decision-Making Methods

Interpretation

The comprehensive evaluation in Table 4.5 provides a multidimensional assessment of various
architectural decision-making methods. The RL-based system consistently performed well across
most criteria, notably excelling in decision quality, efficiency, adaptability, and overall user
satisfaction. It outperformed traditional methods in key areas such as response to new constraints
and fault tolerance. The results highlight the RL-based system's ability to provide high-quality,
efficient, and adaptable solutions, making it a strong candidate for large-scale software system
architecture.

V. DISCUSSION

5.1: Results

The results reveal that the reinforcement learning (RL)-based approach to architectural decision-
making offers notable advantages over traditional methods. The RL-based system achieved a high
decision accuracy of 90%, closely mirroring the expert architects' decisions (100%). This suggests
that RL effectively models complex decision-making processes and could serve as a viable
alternative to expert-driven approaches.

In terms of efficiency, the RL-based system demonstrated the fastest decision-making time at 60
seconds, outperforming rule-based (120 seconds) and heuristic-based systems (180 seconds). This
efficiency, aided by techniques like deep Q-networks (DQN) and experience replay, highlights the
system’s suitability for real-time applications.

The RL-based system also excelled in adaptability, scoring 85, indicating strong performance in
handling dynamic changes such as varying loads and new constraints. This adaptability is crucial
for software systems operating in volatile environments, and the RL system's flexibility was
comparable to that of expert architects.

Overall system performance improved by 80% with the RL-based approach, reflecting significant
gains in response time, scalability, and maintainability. Despite a slight gap in achieving the
highest possible improvement scores and decision justifiability compared to expert architects, the
RL system outperformed other automated methods, underscoring its effectiveness.

International Journal of Innovation Studies 5(4)
(2021)

91

5.2: Future Scope

Future research should focus on refining RL models to enhance decision accuracy and
justifiability. This might involve integrating advanced techniques such as hierarchical RL or multi-
agent systems. Exploring hybrid models that combine RL with other AI methods could also be
beneficial, leveraging strengths from complementary technologies.

Practical implementation of RL-based systems in real-world environments should be examined
through case studies and pilot projects to identify challenges and best practices. Additionally,
addressing the ethical and social implications of AI-based decision-making, including
transparency and accountability, is crucial for stakeholder trust and acceptance.

VI. CONCLUSION

This study evaluated the use of reinforcement learning (RL) for architectural decision-making in
large-scale software systems, comparing it to traditional rule-based and heuristic methods. The
RL-based system showed a high decision accuracy of 90%, nearly matching expert architects'
100%, and achieved the fastest decision time of 60 seconds, significantly better than the 120 and
180 seconds required by rule-based and heuristic systems, respectively.

The system’s adaptability, with a score of 85, demonstrated its ability to handle dynamic changes
effectively. Additionally, the RL-based approach improved overall system performance by 80%,
with gains in response time, scalability, and maintainability.

Despite a minor gap in decision justifiability compared to experts, the RL system outperformed
traditional methods in key areas.

REFERENCES

[1] Q. Qi et al., “Scalable parallel task scheduling for autonomous driving using multi-task deep
reinforcement learning,” IEEE Trans Veh Technol, vol. 69, no. 11, pp. 13861–13874, 2020.

[2] S. Ding, X. Zhao, X. Xu, T. Sun, and W. Jia, “An effective asynchronous framework for small
scale reinforcement learning problems,” Applied Intelligence, vol. 49, pp. 4303–4318, 2019.

[3] Y. Zhang, A. Grignard, K. Lyons, A. Aubuchon, and K. Larson, “Real-time machine learning
prediction of an agent-based model for urban decision-making,” in Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, 2018, pp. 2171–2173.

[4] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, “Large-scale cost function
learning for path planning using deep inverse reinforcement learning,” Int J Rob Res, vol. 36, no.
10, pp. 1073–1087, 2017.

[5] W. Wang et al., “Reinforcement-learning-guided source code summarization using hierarchical
attention,” IEEE Transactions on software Engineering, vol. 48, no. 1, pp. 102–119, 2020.

International Journal of Innovation Studies 5(4)
(2021)

92

[6] S. Park, D. Kwon, J. Kim, Y. K. Lee, and S. Cho, “Adaptive real-time offloading decision-making
for mobile edges: deep reinforcement learning framework and simulation results,” Applied
Sciences, vol. 10, no. 5, p. 1663, 2020.

[7] J.-W. Liu, L.-Q. Hu, Z.-Q. Cai, L.-N. Xing, and X. Tan, “Large-scale and adaptive service
composition based on deep reinforcement learning,” J Vis Commun Image Represent, vol. 65, p.
102687, 2019.

[8] S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao, “ADRL: A hybrid anomaly-aware
deep reinforcement learning-based resource scaling in clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 3, pp. 514–526, 2020.

[9] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of reinforcement learning
techniques for fuzzy cloud auto-scaling,” in 2017 17th IEEE/ACM international symposium on
cluster, cloud and grid computing (CCGRID), IEEE, 2017, pp. 64–73.

[10] S. Zhang, T. Wu, M. Pan, C. Zhang, and Y. Yu, “A-SARSA: A predictive container auto-scaling
algorithm based on reinforcement learning,” in 2020 IEEE international conference on web
services (ICWS), IEEE, 2020, pp. 489–497.

[11] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization,” in Proceedings of the 2018 conference of the
ACM special interest group on data communication, 2018, pp. 191–205.

[12] X. Chen, F. Zhu, Z. Chen, G. Min, X. Zheng, and C. Rong, “Resource allocation for cloud-based
software services using prediction-enabled feedback control with reinforcement learning,” IEEE
Transactions on Cloud Computing, vol. 10, no. 2, pp. 1117–1129, 2020.

[13] R. Raman and M. D’Souza, “Decision learning framework for architecture design decisions of
complex systems and system‐of‐systems,” Systems Engineering, vol. 22, no. 6, pp. 538–560, 2019.

[14] A. Moustafa and T. Ito, “A deep reinforcement learning approach for large-scale service
composition,” in PRIMA 2018: Principles and Practice of Multi-Agent Systems: 21st International
Conference, Tokyo, Japan, October 29-November 2, 2018, Proceedings 21, Springer, 2018, pp.
296–311.

[15] M. Bhat, K. Shumaiev, U. Hohenstein, A. Biesdorf, and F. Matthes, “The evolution of architectural
decision making as a key focus area of software architecture research: A semi-systematic literature
study,” in 2020 ieee international conference on software architecture (icsa), IEEE, 2020, pp. 69–
80.

[16] L. E. Lwakatare, A. Raj, I. Crnkovic, J. Bosch, and H. H. Olsson, “Large-scale machine learning
systems in real-world industrial settings: A review of challenges and solutions,” Inf Softw Technol,
vol. 127, p. 106368, 2020.

International Journal of Innovation Studies 5(4)
(2021)

93

[17] E. Skordilis and R. Moghaddass, “A deep reinforcement learning approach for real-time sensor-
driven decision making and predictive analytics,” Comput Ind Eng, vol. 147, p. 106600, 2020.

[18] C. Morariu, O. Morariu, S. Răileanu, and T. Borangiu, “Machine learning for predictive scheduling
and resource allocation in large scale manufacturing systems,” Comput Ind, vol. 120, p. 103244,
2020.

