
 
 

   
 
 
  

80 
 

International Journal of Innovation Studies 

ARCHITECTURAL DECISION-MAKING USING REINFORCEMENT LEARNING IN 
LARGE-SCALE SOFTWARE SYSTEMS 

 
Virender Dhiman 

Independent Researcher, United States 
dhiman.virender@gmail.com 

ABSTRACT 

Architectural decision-making in large-scale software systems plays a crucial role in determining 
performance, scalability, and maintainability. Traditional methods, such as rule-based and 
heuristic-based systems, often fall short in managing the complexity and dynamism of modern 
software environments. This study explores the application of reinforcement learning (RL) to 
address these limitations. Leveraging advanced RL techniques, including Deep Q-Networks 
(DQN) and Proximal Policy Optimization (PPO), the research proposes a novel approach for 
optimizing architectural decisions. 

The RL-based system was evaluated against traditional methods, demonstrating superior 
performance in several areas. The RL system achieved a decision accuracy of 90%, closely 
aligning with expert architects' decisions. It also outperformed traditional systems in decision-
making speed, with an average time of 60 seconds, compared to 120 and 180 seconds for rule-
based and heuristic systems, respectively. Furthermore, the RL approach exhibited strong 
adaptability, handling dynamic changes and constraints with a score of 85. Overall, it improved 
system performance by 80%, enhancing response time, scalability, and maintainability. 

I. INTRODUCTION 

Architectural decision-making is a critical component of large-scale software system design, 
influencing aspects such as performance, scalability, and maintainability. Traditional methods for 
making architectural decisions, such as rule-based and heuristic-based systems, often rely on 
predefined guidelines and empirical knowledge [1]. While these approaches have been effective 
in various contexts, they face limitations in handling the dynamic and complex nature of modern 
software systems. The rapid evolution of software requirements and the increasing scale of systems 
demand more adaptive and efficient decision-making processes [2]. 

Reinforcement learning (RL), a subset of machine learning, offers a promising alternative for 
optimizing architectural decisions [3]. By leveraging algorithms that learn from interactions with 
the environment and improve performance through trial and error, RL has the potential to enhance 
decision-making capabilities in ways that traditional methods cannot. This approach is particularly 
relevant for large-scale systems, where the decision-making landscape is continually shifting due 
to varying loads, constraints, and requirements. 
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Fig 1.1: The architecture of reinforcement learning 

Problem Statement: Despite the advancements in RL techniques, there remains a gap in their 
application to comprehensive architectural decision-making for large-scale software systems. 
Previous research has primarily focused on isolated aspects of system optimization or specific 
types of decision-making scenarios. There is a lack of studies that integrate advanced RL 
techniques, such as Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO), to provide 
a holistic solution for dynamic and complex architectural decision-making processes across 
diverse system conditions. Consequently, there is a need for a more robust and adaptive solution 
that can handle the intricacies of modern software systems and deliver improved performance 
outcomes. 

Significance of the Work: The significance of this work lies in its exploration and implementation 
of RL-based methods for architectural decision-making. By integrating DQN and PPO algorithms, 
this research addresses the limitations of traditional approaches and provides a comprehensive 
solution for optimizing architectural decisions.  

This research fills a critical gap in the application of RL to large-scale software architecture, 
offering a valuable alternative to traditional methods and paving the way for future advancements 
in adaptive and efficient decision-making systems. 

II. LITERATURE REVIEW 

The application of reinforcement learning (RL) in architectural decision-making for software 
systems has garnered significant attention in recent years. This literature review explores relevant 
studies, highlighting advancements in the field and identifying the research gap addressed by the 
present study. 
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Reinforcement Learning in Architectural Decision-Making 

Reinforcement learning, particularly deep reinforcement learning (DRL), has shown promise in 
optimizing complex decision-making processes. According to [4], Deep Q-Networks (DQN) have 
successfully applied RL to high-dimensional sensory inputs, enabling effective decision-making 
in complex environments [5]. This foundational work demonstrated the potential of DRL for 
various applications, including those requiring dynamic and adaptive decision-making. 

In the context of software architecture, [6] explored RL for optimizing software system 
configurations, focusing on performance tuning and resource allocation [5]. Their study 
highlighted RL's capability to adapt to changing system conditions and improve performance 
metrics such as response time and throughput. Similarly, [7] applied DRL to optimize system 
designs, demonstrating improvements in both decision accuracy and efficiency [8]. 

Traditional Decision-Making Approaches 

Traditional architectural decision-making approaches, such as rule-based and heuristic-based 
systems, have been widely used. Rule-based systems rely on predefined rules to guide decisions, 
as outlined by [9], who noted that while such systems offer simplicity, they often lack the flexibility 
needed for dynamic environments [10]. Heuristic-based methods, as described by [11], use 
empirical strategies to make decisions but may not scale well with increasing complexity [12]. 

These traditional methods, while established, have limitations in handling complex and dynamic 
scenarios, leading researchers to explore more adaptive approaches. 

Advances in RL for Software Systems 

Recent advancements in RL have further expanded its applicability. [13], [14] introduced Proximal 
Policy Optimization (PPO) for improving policy gradient methods, which enhances stability and 
performance in RL applications [15]. Their work is particularly relevant for architectural decision-
making, where stability and adaptability are crucial. 

Moreover, the integration of RL with other AI techniques, such as meta-learning and transfer 
learning, has shown potential. As noted by [16], [17], meta-learning approaches can significantly 
improve the adaptability of RL models by enabling them to learn from a broader range of scenarios 
[18]. This integration could address some of the limitations of traditional methods by providing 
more flexible and robust solutions. 

Research Gap 

Despite these advancements, there remains a gap in the application of RL for comprehensive 
architectural decision-making in large-scale software systems. Previous research has primarily 
focused on either isolated aspects of system optimization or specific types of decision-making 
scenarios. There is limited research addressing the integration of RL techniques, such as DQN and 
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PPO, to provide a holistic solution for dynamic and complex architectural decision-making 
processes across a variety of system conditions. 

The present study addresses this gap by implementing an RL-based approach that integrates DQN 
and PPO algorithms to optimize architectural decisions in large-scale software systems. The 
research demonstrates the effectiveness of RL in improving decision accuracy, computational 
efficiency, adaptability, and overall system performance. By providing a comprehensive 
evaluation and comparison with traditional methods, this study fills the gap in understanding how 
advanced RL techniques can be applied to complex architectural decision-making, offering 
significant improvements over existing approaches. 

III. METHODOLOGY AND IMPLEMENTATION 

This section details the technical methodology and implementation strategy for evaluating RL in 
architectural decision-making for large-scale software systems. The methodology encompasses 
system architecture, data preparation, model training, and performance evaluation metrics. 

 System Architecture 

The system architecture was designed to facilitate a comparative analysis between RL-based 
decision-making and traditional rule-based and heuristic-based systems. The RL-based approach 
employed advanced deep reinforcement learning techniques, including Deep Q-Networks (DQN) 
and Proximal Policy Optimization (PPO), to optimize architectural decisions. The evaluation 
criteria included decision accuracy, computational efficiency, adaptability, and overall system 
performance. 

 

Fig 3.1: Deep Q-Networks 

The flow for the PPO model deployed can be seen in fig 3.3. 
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Fig 3.2: PPO Model 

The Expert system deployed for comparison purposes was with the architecture as below in fig 

3.4.  

Fig 3.3: Expert System Architecture 

 Data Preparation 

Data for training and evaluation consisted of a diverse set of architectural scenarios, simulating 
various system loads, constraints, and requirements. Historical datasets detailing architectural 
decisions and their outcomes were utilized. This data was pre-processed to extract relevant 
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features, including response times, system loads, and architectural parameters, ensuring a 
comprehensive training dataset. 

Model Training 

1. Reinforcement Learning Model 

● Algorithms: The RL agent was trained using DQN and PPO algorithms. The DQN was 
used for learning action-value functions, while PPO was applied for optimizing policy 
gradients. 

● Reward Function: A reward function was designed to incentivize decisions that enhance 
system performance. It penalized suboptimal decisions and rewarded improvements in 
response times, scalability, and maintainability. 

● Training Process: The training involved iterative updates based on experience replay for 
DQN and policy optimization for PPO. The agent was trained in a simulated environment 
to generalize across various architectural scenarios. 

2. Rule-Based and Heuristic-Based Systems 

● Implementation: Rule-based and heuristic-based systems were developed using predefined 
rules and heuristics derived from established practices in software architecture. These 
systems served as benchmarks for evaluating the RL approach. 

● Parameters: The rule-based system employed a fixed set of rules, while the heuristic-based 
system utilized heuristics to make decisions based on historical performance data. 

 Evaluation Metrics 

1. Decision Accuracy:  Measurement: Accuracy was determined by comparing the decisions of 
the RL agent against those of expert architects.  

2. Computational Efficiency: Measurement: The average decision-making time was recorded for 
each system.  

3. Adaptability: Measurement: Adaptability was evaluated by introducing dynamic changes to the 
simulated environment, such as variable loads and new constraints.  

4. Overall Performance Improvement: Measurement: Performance improvement was assessed by 
measuring enhancements in system response time, scalability, and maintainability.  

 Implementation 

1. Simulation Environment 

A detailed simulation environment was constructed to replicate various software scenarios and 
load conditions. This environment facilitated robust testing of the RL-based system and ensured 
realistic evaluation. 
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2. Comparative Analysis 

Performance metrics from the RL-based system were compared to those of rule-based and 
heuristic-based systems. Statistical methods were employed to analyze differences and assess the 
significance of observed results. 

3. Results Interpretation 

Results were compiled into comprehensive tables, and the performance of each system was 
evaluated based on accuracy, efficiency, adaptability, and overall performance improvement. The 
findings provided insights into the effectiveness of the RL-based approach relative to traditional 
methods. 

This methodology enabled a rigorous evaluation of the RL-based decision-making system, 
providing a detailed comparison with conventional approaches and demonstrating the advantages 
of RL in large-scale software system architecture. 

IV. RESULTS 

This section presents the empirical results obtained from applying reinforcement learning (RL) to 
architectural decision-making in large-scale software systems. The evaluation focuses on key 
performance metrics: decision accuracy, computational efficiency, system adaptability, and 
overall system performance enhancement. The RL approach was benchmarked against traditional 
decision-making methodologies, including rule-based and heuristic-based systems. 

4.1: Decision Accuracy 

To evaluate decision accuracy, the architectural decisions made by the RL agent were compared 
to those made by a panel of expert software architects. The comparison was quantified based on 
the congruence between the decisions, reflecting the quality and precision of the RL agent's 
choices. Table 4.1 outlines the results. 

Method Accuracy (%) 

Expert Architects 100 

Rule-Based System 75 

Heuristic-Based System 82 

RL-Based System 90 

 

Table 4.1: Decision Accuracy Comparison 
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Interpretation 

The RL-based system achieved a decision accuracy of 90%, closely aligning with the benchmark 
set by expert architects. The rule-based and heuristic-based systems lagged behind, with accuracies 
of 75% and 82%, respectively. The RL agent was trained using a combination of policy gradient 
methods and Q-learning algorithms, optimized for minimizing decision error. The results indicate 
that RL can effectively capture complex decision-making patterns in architectural design, 
approximating expert-level decisions. 

4.2: Computational Efficiency 

The time efficiency of each method was assessed by measuring the average time required to reach 
a decision under varying system conditions. The computational complexity of each decision-
making process was analyzed, taking into account the algorithmic operations and the decision 
space explored. Table 4.2 presents the findings. 

Method Average Decision Time (seconds) 

Expert Architects 300 

Rule-Based System 120 

Heuristic-Based System 180 

RL-Based System 60 

Table 4.2: Time Efficiency in Decision Making 

Interpretation   

The RL-based system demonstrated superior computational efficiency, with an average decision 
time of 60 seconds. This efficiency is attributed to the use of deep Q-networks (DQN) and 
experience replay, which enable rapid convergence and decision-making. The rule-based and 
heuristic-based systems required 120 and 180 seconds, respectively, highlighting the 
computational overhead associated with predefined rules and heuristics. The reduction in decision 
time by the RL system suggests its potential for real-time applications in large-scale software 
systems. 

4.3: System Adaptability 

Adaptability was evaluated by subjecting each system to dynamic and unpredictable changes in 
the software environment, such as varying load conditions and new architectural constraints. The 
adaptability score reflects the system's ability to adjust and optimize decisions under these varying 
conditions. Table 4.3 details the results. 
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Method Adaptability Score (0-100) 

Expert Architects 95 

Rule-Based System 60 

Heuristic-Based System 70 

RL-Based System 85 

 

Table 4.3: System Adaptability 

Interpretation   

The RL-based system achieved an adaptability score of 85, outperforming traditional methods in 
handling dynamic changes. This adaptability is largely due to the RL agent's training on diverse 
state-action pairs, which allowed it to generalize well to unseen scenarios. The score of 85 reflects 
the system's capacity to optimize architectural decisions in response to real-time environmental 
changes, such as fluctuating user demand or system resource availability. 

4.4: Overall System Performance Improvement 

The overall system performance improvement was quantified by measuring key performance 
indicators (KPIs) such as response time, scalability, and maintainability. The improvement score 
encapsulates the percentage increase in system efficiency and effectiveness due to the architectural 
decisions made. Table 4 summarizes the performance improvements. 

Method Improvement Score (%) 

Expert Architects 100 

Rule-Based System 50 

Heuristic-Based System 65 

RL-Based System 80 

Table 4.4: Overall System Performance Improvement 

Interpretation 

The RL-based system resulted in an 80% improvement in overall system performance. This score 
reflects substantial enhancements across multiple KPIs, facilitated by optimized architectural 
configurations. The use of proximal policy optimization (PPO) algorithms in the RL agent enabled 
fine-tuning of system parameters, leading to improved resource allocation and system throughput. 
While the system did not fully achieve the expert architects' benchmark of 100%, it significantly 
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outperformed the rule-based and heuristic-based systems, which showed improvement scores of 
50% and 65%, respectively. 

4.5: Comprehensive Evaluation 

Criteria Sub-Criteria Expert 
Architects 

Rule-
Based 
System 

Heuristic-
Based 
System 

RL-Based 
System 

Decision Quality Correctness (%) 100 75 82 90 

 Consistency 
(%) 

98 70 80 88 

 Justifiability High Medium Medium High 

Efficiency Average Time 
(s) 

300 120 180 60 

 Computational 
Complexity 

Moderate Low Moderate High 

 Scalability High Low Medium High 

Adaptability Load Handling 
Capacity 

High Low Medium High 

 Response to 
New 
Constraints 

Excellent Poor Good Excellent 

 Flexibility High Low Medium High 

Performance 
Impact 

Response Time 
Improvement 
(%) 

30 15 20 25 

 Scalability 
Improvement 
(%) 

35 10 18 28 

 Maintainability Excellent Poor Good Very 
Good 

Robustness Fault Tolerance High Low Medium High 
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 Recovery Time 
(s) 

10 60 30 20 

Overall User 
Satisfaction 

User Feedback 
Score (0-100) 

95 60 75 85 

Table 4.5: Comprehensive Evaluation of Architectural Decision-Making Methods 

Interpretation 

The comprehensive evaluation in Table 4.5 provides a multidimensional assessment of various 
architectural decision-making methods. The RL-based system consistently performed well across 
most criteria, notably excelling in decision quality, efficiency, adaptability, and overall user 
satisfaction. It outperformed traditional methods in key areas such as response to new constraints 
and fault tolerance. The results highlight the RL-based system's ability to provide high-quality, 
efficient, and adaptable solutions, making it a strong candidate for large-scale software system 
architecture. 

V. DISCUSSION 

5.1: Results 

The results reveal that the reinforcement learning (RL)-based approach to architectural decision-
making offers notable advantages over traditional methods. The RL-based system achieved a high 
decision accuracy of 90%, closely mirroring the expert architects' decisions (100%). This suggests 
that RL effectively models complex decision-making processes and could serve as a viable 
alternative to expert-driven approaches. 

In terms of efficiency, the RL-based system demonstrated the fastest decision-making time at 60 
seconds, outperforming rule-based (120 seconds) and heuristic-based systems (180 seconds). This 
efficiency, aided by techniques like deep Q-networks (DQN) and experience replay, highlights the 
system’s suitability for real-time applications. 

The RL-based system also excelled in adaptability, scoring 85, indicating strong performance in 
handling dynamic changes such as varying loads and new constraints. This adaptability is crucial 
for software systems operating in volatile environments, and the RL system's flexibility was 
comparable to that of expert architects. 

Overall system performance improved by 80% with the RL-based approach, reflecting significant 
gains in response time, scalability, and maintainability. Despite a slight gap in achieving the 
highest possible improvement scores and decision justifiability compared to expert architects, the 
RL system outperformed other automated methods, underscoring its effectiveness. 
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5.2: Future Scope 

Future research should focus on refining RL models to enhance decision accuracy and 
justifiability. This might involve integrating advanced techniques such as hierarchical RL or multi-
agent systems. Exploring hybrid models that combine RL with other AI methods could also be 
beneficial, leveraging strengths from complementary technologies. 

Practical implementation of RL-based systems in real-world environments should be examined 
through case studies and pilot projects to identify challenges and best practices. Additionally, 
addressing the ethical and social implications of AI-based decision-making, including 
transparency and accountability, is crucial for stakeholder trust and acceptance. 

VI. CONCLUSION 

This study evaluated the use of reinforcement learning (RL) for architectural decision-making in 
large-scale software systems, comparing it to traditional rule-based and heuristic methods. The 
RL-based system showed a high decision accuracy of 90%, nearly matching expert architects' 
100%, and achieved the fastest decision time of 60 seconds, significantly better than the 120 and 
180 seconds required by rule-based and heuristic systems, respectively. 

The system’s adaptability, with a score of 85, demonstrated its ability to handle dynamic changes 
effectively. Additionally, the RL-based approach improved overall system performance by 80%, 
with gains in response time, scalability, and maintainability. 

Despite a minor gap in decision justifiability compared to experts, the RL system outperformed 
traditional methods in key areas.  
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