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Abstract: We propose an open-type Generalized Quadrature Rule by combining the Anti-
Gauss 3-point rule with Simpson's 3/8 rule. The convergence properties of the new rule are 
rigorously analysed, and error estimates confirm its superior accuracy compared to the 
individual base rules. To validate these findings, we apply the rule to a range of test integrals. 
The results highlight the Generalized Quadrature Rule's improved performance and dominance 
over its constituents, particularly in handling indefinite integrals, making it a valuable tool for 
practical applications. 
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1. Introduction 

Numerical integration, a core aspect of numerical analysis, relies heavily on quadrature rules 
to approximate definite integrals effectively. The precision of these rules plays a pivotal role 
in determining their utility; higher precision often translates into more accurate results. Over 
the years, numerous mixed-type quadrature rules [7,8,9,10,11,14] have been developed, and 
ongoing research endeavours aim to enhance their precision further. 

A notable advancement in this domain was introduced by S.K. Mohanty and R.B. Dash [5,6], 
who proposed a generalized methodology for achieving higher precision by combining 
multiple lower precision quadrature rules. Their work primarily focused on developing closed-
type quadrature rules for evaluating definite integrals, providing a framework that has 
significantly influenced subsequent research in numerical integration. 

This paper expands on the foundational work of Mohanty and Dash by further developing their 
generalized approach for open-type quadrature rules. In particular, we present a novel approach 
for deriving an open-type generalized quadrature rule with degree of precision five. This is 
achieved by amalgamating two existing lower precision rules: the anti-Gauss 3-point rule and 
Simpson’s 3/8 rule [1,2,3,4,12,13,15], each with a precision of 3. The new rule serves as a 
powerful tool for enhancing accuracy in numerical integration, particularly in cases where 
open-type rules are preferred. 

The remainder of this paper is organised in the following manner: 

• Section 2: Background and Motivation – Explores the theoretical foundation and the 
need for higher precision quadrature rules. 
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• Section 3: Review of Constituent Quadrature Rules – Provides an overview of the 
anti-Gauss 3-point rule and Simpson’s 3/8 rule, highlighting their precision and 
application. 

• Section 4: Development of the Generalized Quadrature Rule – Details the 
methodology for constructing the precision-5 open-type quadrature rule by combining 
the constituent rules. 

• Section 5: Error Analysis – Examines the accuracy and error characteristics of the 
newly developed rule. 

• Section 6: Applications and Case Studies – Demonstrates the practical utility of the 
proposed rule through real-world numerical integration problems. 

• Section 7: Conclusions – Summarizes the findings and discusses potential extensions 
to the proposed method. 

Through this work, we aim to advance the field of numerical integration by introducing a novel, 
higher-precision open-type quadrature rule. This method addresses the challenges associated 
with achieving precision-5 in open-type rules and paves the way for further research and 
application in scientific computation. 

2. Background and Motivation 

A generalized quadrature rule is a higher-precision rule created by combining n quadrature 
rules, each with lower precision, where 𝑛 ∈ 𝑁	and	𝑛 ≥ 2 [5,6]. 

Let 𝑆𝑅# represent this generalized quadrature rule of larger precision, constructed by merging 
the lower-precision quadrature rules 𝑅!, 𝑅", 𝑅$,… .𝑅#, provided they satisfy the necessary SR-
conditions [5,6]. The rule 𝑆𝑅#  can then be expressed as follows: 

𝑆𝑅#= 𝑎!𝑅! + 𝑎"𝑅" + 𝑎$𝑅$ +⋯+ 𝑎#𝑅#; 	∑ 𝑎&#
&'! = 1                                                             (1) 

Here, 𝑎!, 𝑎", 𝑎$, … 𝑎# represent n rational coefficients, which are determined by ensuring that 
the rule 𝑆𝑅# is exact ∀ polynomials up to degree 𝑑𝑅# + 2. The truncation error associated with 
equation (1) is expressed as: 
𝐸𝑆𝑅#= 𝑎!𝐸𝑅! + 𝑎"𝐸𝑅" + 𝑎$𝐸𝑅$ +⋯+ 𝑎#𝐸𝑅#; 	∑ 𝑎&#

&'! = 1                                                 (2) 
By assuming that the error vanishes for all polynomials up to degree 𝑆𝑅#, we can determine 
the coefficients 𝑎!, 𝑎", 𝑎$, … 𝑎#. Substituting these values into equation (1) allows us to derive 
the required generalized quadrature rule. 

3. Review of Constituent Quadrature Rules 
This section examines two established quadrature rules, both possessing a precision of 3. 

3.1 Anti-Gaussian three-point rule 

Using the approach proposed by Laurie [3], the anti-Gauss three-point quadrature is derived 
from the Gaussian 2-point rule. The Gauss two-point rule accurately integrates polynomials up 
to deg-3, while the anti-Gauss rule serves as its complement by handling polynomials that the 
Gaussian rule does not effectively address [3,4]. 



International Journal of Innovation Studies 9 (1) (2025) 

 

 1696 

The anti-Gaussian rule aims to minimize errors in the integration of higher-degree polynomials, 
especially those orthogonal to the polynomials precisely handled by the Gauss rule. This leads 
to the formulation of the anti-Gaussian 3-point rule, which is expressed as: 

𝑎𝐺𝐿$(𝑓) =
!
!$
?5𝑓 A−C!$

(
D + 16𝑓(0) + 5𝑓 AC!$

(
DG                                                           (3) 

Applying Taylor’s theorem to equation (3), we obtain: 

𝑎𝐺𝐿$(𝑓) = 2 H𝑓(0) + !
$!
𝑓**(0) + !$

+×(!
𝑓&-(0) + !.+

./(×.!
𝑓-&(0) + + (!$)!

$×2!×(!()!
𝑓-&&&(0) +

"×(!$)"

!3!×(!()#
𝑓4(0) + ⋯I                                                                                                            (4) 

The exact value of the integral 
Using Taylor’s theorem [1,2,11,12,13,15], The integral's precise (exact) value is expressed as: 

𝐼(𝑓) = 2 H𝑓(0) + !
$!
𝑓**(0) + !

(!
𝑓&-(0) + !

/!
𝑓-&(0) + + !

+!
𝑓-&&&(0) + !

!!!
𝑓4(0) + ⋯ I        (5) 

Theorem 1 
If 𝑓(𝑥) possesses sufficient differentiability on the interval [−1,1], the truncation error 
corresponding to 𝑎𝐺𝐿$(𝑓) can be expressed as follows:  
𝐸𝑎𝐺𝐿$(𝑓) = − !

!$(
𝑓&-(0) − !3!.

/!×./(
𝑓-&(0) − .5$"

+!×(!()!
𝑓-&&&(0) + !$!3$$

!!!×(!()#
𝑓4(0) + ⋯.                                    

Proof: We have 𝐼(𝑓) = 𝐺𝐿$(𝑓) + 𝑎𝐺𝐿$(𝑓)                                                                         (6) 
Using values from (4) and (5) on (6), we get 
𝐸𝑎𝐺𝐿$(𝑓) = − !

!$(
𝑓&-(0) − !3!.

/!×./(
𝑓-&(0) − .5$"

+!×(!()!
𝑓-&&&(0) + !$!3$$

!!!×(!()#
𝑓4(0) + ⋯.       (7) 

Equation (7) confirms that the precision degree of 𝑎𝐺𝐿$(𝑓) is three.             □   

3.1 Simpson’s 3/8 Transformed rule 

Simpson’s 3/8 rule is a method [1,2,11,12] for numerical integration that approximates the 
value of a definite integral using cubic interpolation. For  ∫ 𝑓(𝑥)𝑑𝑥6

7 , the rule partitions the 

interval [a, b] into three subintervals of equal width, ℎ = 687
$

, and the approximation is 
expressed as: 
𝐼(𝑓) ≈ $9

2
[𝑓(𝑎) + 3𝑓(𝑎 + ℎ) + 3𝑓(𝑎 + 2ℎ) + 𝑓(𝑏)]  

When the interval [a, b] is transformed to the standard interval [−1,1], using a linear 
transformation 𝑥 = 687

"
𝑡 + 6:7

"
, the Simpson’s 3/8 Transformed rule becomes: 

𝐼(𝑓) ≈ 𝑆𝑃!
$
(𝑓) = !

5
H𝑓(−1) + 3𝑓 U− !

$
V + 3𝑓 U!

$
V + 𝑓(1)I                                          

Due to Taylor’s Theorem 
𝑆𝑃!

$
(𝑓) = 2𝑓(0) + !

$
𝑓**(0) + /

$"5
𝑓&-(0) + .!

5×"!2/3
𝑓-&(0) + $"2!

"%×!3$$$(
𝑓-&&&(0) + ⋯        (8) 

The truncation error arises from neglecting higher-order terms of the Taylor expansion.  
For Simpson’s 3/8 rule, the truncation error 𝐸𝑆𝑃!

$
(𝑓) is provided in Theorem 2. 

Theorem 2 
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If 𝑓(𝑥) possesses sufficient differentiability on the interval [−1,1], the truncation error 
corresponding to 𝑆𝑃!

$
(𝑓) can be expressed as follows:  

𝐸𝑆𝑃!
$
(𝑓) = − "

53(
𝑓&-(0) − "$

$(×($)%
𝑓-&(0) − .3.$$

+!×.22+
𝑓-&&&(0) + ⋯.                                    

Proof: We have 𝐼(𝑓) = 𝑆𝑃!
$
(𝑓) + 𝐸𝑆𝑃!

$
(𝑓)                                                                         (9) 

Using values from (8) and (5) on (9), we get 
𝐸𝑆𝑃!

$
(𝑓) = − "

53(
𝑓&-(0) − "$

$(×($)%
𝑓-&(0) − .3.$$

+!×.22+
𝑓-&&&(0) + ⋯.                                   (10)                             

The error term in equation (10), expressed in rational coefficient form, shows that the rule 
accurately integrates polynomials up to degree 3 but introduces errors for higher-degree terms. 
Therefore, the precision degree of Simpson’s 3/8 rule is 3. □ 

 
4. Construction of Proposed 𝑺𝑴𝟏𝟐(𝒇) Generalized quadrature rule 

This section outlines the construction of a generalized quadrature rule [5,6] using the 
methodology described in (1) and (2). It integrates two lower-precision rules through a step-
by-step combination technique, ensuring clarity in formulation. A generalized quadrature rule 
of order 2 is derived by blending these two rules using the generalized quadrature framework.  
Here we consider, 
𝑅!(𝑓) = 𝑎𝐺𝐿$(𝑓) = Anti-Gaussian 3-point quadrature rule. 
𝑅$(𝑓) = 𝑆𝑃$/2(𝑓) = Simpson’s 3/8 rule Transformed quadrature rule. 
Since each rule has a precision of 3, it follows that 𝑑𝑅!(𝑓) = 𝑑𝑅"(𝑓). Consequently, 𝑅!(𝑓) 
and 𝑅"(𝑓) satisfy the SR conditions [5,6]. The formulation of the proposed generalised 
quadrature rule is presented in Theorem 3. 

Theorem 3  
If 𝑓(𝑥) possesses sufficient differentiability on the interval [−1,1], the generalized quadrature 
𝑆𝑀!"(𝑓) can be expressed as:  
                                 𝑆𝑀!"(𝑓) = 3𝑆𝑃$/2(𝑓) − 2𝑎𝐺𝐿$(𝑓)  
The corresponding truncation error is given by: 
                                𝐸𝑆𝑀!"(𝑓) = 3𝐸𝑆𝑃$/2(𝑓) − 2𝐸𝑎𝐺𝐿$(𝑓). 
Proof: The generalized quadrature rule 𝑆𝑀!"(𝑓), expressed in terms of 𝑅!(𝑓) and 𝑅"(𝑓), is 
given by: 
                                𝑆𝑀!"(𝑓) = [𝑎!𝑅!(𝑓) + 𝑎"𝑅"(𝑓)], where,  𝑎! + 𝑎" = 1                          (11) 
The corresponding truncation error for 𝑆𝑀!"(𝑓)  is given by: 
                                𝐸𝑆𝑀!"(𝑓) = [𝑎!𝐸𝑅! + 𝑎"𝐸𝑅"]                                                                (12)                                                                                                           
By applying equations (7) and (11) to equation (12), we obtain: 
𝐸𝑆𝑀!"(𝑓) = 𝑎! Z−

!
!$(

𝑓&-(0) − !3!.
/!×./(

𝑓-&(0) − .5$"
+!×(!()!

𝑓-&&&(0) + !$!3$$
!!!×(!()#

𝑓4(0) + ⋯[ +

𝑎" Z−
"
53(

𝑓&-(0) − "$
$(×($)%

𝑓-&(0) − .3.$$
+!×.22+

𝑓-&&&(0) + ⋯[                                                     (13) 

We select 𝑎! and 𝑎" such that the quadrature rule 𝑆𝑀!"(𝑓) is exact for all polynomials up to 
degree 5, i.e., 𝑑𝑅"+2=5. 

From the error term, we derive the equation: 
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                                                        7&
!$(

+ "7'
53(

= 0                                                                    (14) 

Solving equations (11) and (14) yields 𝑎! = −2 and 𝑎" = 3. 
Substituting these values into equations (11) and (12) leads to the desired result. 
 
Corollary: If 𝑓(𝑥) possesses sufficient differentiability on the interval [−1,1], the truncation 
error corresponding to 𝑆𝑀!"(𝑓) can be expressed as follows:  
𝐸𝑆𝑀!"(𝑓) = − $!$!

/!×("×$"
𝑓-&(0) − !/(3+.$5$

+!×!('×"3../
𝑓-&&&(0) − ⋯  

Proof:  Substituting the values of 𝑎! and 𝑎" into equation (13) yields the desired result.           □ 

 

 

Pictorial Representation of formulation of the rule 

  

 

 

 

 

                                                                                                      

          

 

 

 

                       Figure-1: Formulation of  𝑆𝑀!"(𝑓)	the rule 

5. Error Analysis 
  Following from Theorem 1 and the corollary of Theorem 3 

|𝐸𝑆𝑀!"(𝑓)| ≤ |𝐸𝑎𝐺𝐿$(𝑓)| 
Following from Theorem 2 and the corollary of Theorem 3 

|𝐸𝑆𝑀!"(𝑓)| ≤ |𝐸𝑆𝑃$
2
(𝑓)| 

A comparison between the proposed precision-5 rule and existing lower-precision rules 
highlights the improved accuracy of our generalized method. Both theoretical justification and 
practical examples supporting this enhancement are provided in Section 6. 

Theorem 4 
             The error bound of the constructed quadrature rule	𝑆𝑀!"(𝑓) is 
⇒ |𝐸𝑆𝑀!"(𝑓)| ≤

">
!$(

|𝜉" − 𝜉!|, 	𝜉!, 𝜉"𝜖[−1, 1]	 and 𝑀 = Sup
8!?4?!

|𝑓-(𝑥)| 

Proof:     From (7), we get   𝐸𝑎𝐺𝐿$(𝑓) ≅ − !
!$(

𝑓&-(𝜉!),      𝜉!𝜖[−1, 1] 

Anti-Gaussian 3-point rule 
𝑎𝐺𝐿!(𝑓) 

(Precision 3) 
 

Simpson’s 3/8 rule  
𝑆𝑃$/2(𝑓) 

(Precision 3) 

Open type Generalized rule 
                 𝑆𝑀!"(𝑓)  

(Precision 5) 
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            and from (10), we get   𝐸𝑆𝑃!
$
(𝑓) ≅ − "

53(
𝑓&-(𝜉"),				𝜉"𝜖[−1, 1] 

using above vales on (12) and using values of 𝑎!and 𝑎!, we get 

𝐸𝑆𝑀!"(𝑓) =
2
135 𝑓

&-(𝜉!) −
6
405 𝑓

&-(𝜉") =
2
135 f𝑓

&-(𝜉!) − 𝑓&-(𝜉")g 

Due to Lagrange’s Mean value theorem  
  𝐸𝑆𝑀!"(𝑓) ≅

8"
!$(

(𝜉" − 𝜉!) 𝑓-(𝜉), 	for		some	𝜉	𝜖	(𝜉!, 𝜉"), when 𝜉! ≤ 𝜉" (otherwise reverse the 
order)   
⇒ |𝐸𝑆𝑀!"(𝑓)| ≅

"
!$(

|(𝜉" − 𝜉!)	𝑓-(𝜉)| ≤
"
!$(

|𝜉" − 𝜉!||	𝑓-(𝜉)| 

                                      ≤ "
!$(

|𝜉" − 𝜉!|	𝐾,where	𝐾 = Sup
@&?4?@'

|𝑓-(𝑥)| 

                                       ≤ "
!$(

|𝜉" − 𝜉!|	𝑀,𝑤ℎ𝑒𝑟𝑒	𝑀 = Sup
8!?4?!

|𝑓4&(𝑥)| and 𝐾 ≤ 𝑀 

      ⇒ |𝐸𝑆𝑀!"(𝑓)| ≤
">
!$(

|𝜉" − 𝜉!|                                                                                      (15)                                                                                                              

Since 𝜉!	𝑎𝑛𝑑	𝜉" are arbitrarily chosen points in 	[−1, 1], (15) shows that the absolute value of 
the truncation error will be less if the points 𝜉!	𝑎𝑛𝑑	𝜉" are closure to each other.             ¨ 

Corollary.  
        The error bound for the truncation error is 
 |𝐸𝑆𝑀!"(𝑓)| ≤

5>
!$(

, 𝑀 = Sup
8!?4?!

|𝑓-(𝑥)| 

Proof: From the theorem 4 
             |𝐸𝑆𝑀!"(𝑓)| ≤

">
!$(

|𝜉" − 𝜉!|, 		𝜉!, 𝜉"𝜖[−1, 1]	, where 𝑀 = Sup
8!?4?!

|𝑓-(𝑥)| 

Again |𝜉" − 𝜉!| ≤ 2, ref [1]. Using on the above inequation, we have 
											|𝐸𝑆𝑀ABCDB(𝑓)| ≤

5>
!$(

  

6. Applications and Case Studies 

This section examines the new quadrature rule's application to open-type test integrals, 
analysing five examples. Results and error comparisons are presented in Tables 1 and 2, 
respectively. 
Table 1: Values computed from 5 test integrals.  

Integral 𝑎𝐺𝐿$(𝑓) 𝑆𝑃$
2
(𝑓) 𝑆𝑀!"(𝑓) 

𝐼! = t 𝑒84√𝑥
E

3
𝑑𝑥 

0.886227119 0.886227079015 0.886226999045 

𝐼" = t
sin 𝑥
𝑥𝑒4

E

3
𝑑𝑥 

0.78539947 0.785398998997 0.785398056991 

𝐼$

= t
log	(1 + 𝑥)

𝑒4
E

3
𝑑𝑥 

0.596347895 0.596347831097
9 

0.5963477032937 
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𝐼5 = t
log	 x
𝑒4

E

3
𝑑𝑥 

–0.577215756 
 

−0.57721572990
1 

–0.577215677703 

𝐼( = t
𝑑𝑥

𝑒4(1 + 𝑥")

E

3
 

0.621449289 0.60912144977 0.58446577131 

 
Table 2: Error comparison  
Integral Exact Value |𝐸𝑎𝐺𝐿$(𝑓)| |𝐸𝑆𝑃$/2(𝑓)| |𝐸𝑆𝑀!"(𝑓)| 

𝐼! 0.886226925452758 1.9354724  
× 108/ 

1.5356 
× 108/ 

7.3592× 1082 

𝐼" 0.785398163397030 1.3066× 108. 8.356× 108/ 1.064× 1082 

𝐼$ 0.596347362323194 5.326768× 108/ 4.6877×
108/ 

3.4097× 108/ 

𝐼5 −0.577215664901532 9.1098468×
1082 

6.4999468×
1082 

1.28014× 1082 

𝐼( 0.577158665928169 4.4290623×
108" 

3.196278×
108" 

7.307105×
108$ 

 
 

 
Figure 2: Error comparison for 𝑰𝟏(𝒇)  
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Figure 3: Error comparison for 𝑰𝟐(𝒇)  
 

 
Figure 4: Error comparison for 𝑰𝟑(𝒇)  
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Figure 5: Error comparison for 𝑰𝟒(𝒇)  
 

 
Figure 6: Error comparison for 𝑰𝟓(𝒇)  

Observation: The above five figures are drawn based on the data available in the Table 2. We 
observe that the error due to constructed 𝑆𝑀!"(𝑓) is less in comparison to its constituents.  

6. Conclusions. 
The constructed rule significantly outperforms base rules in numerical integration, reducing 
errors both theoretically and practically. The introduction of an open-type generalized 
quadrature rule with precision-5 represents a significant advancement in the field. By 
integrating the Anti-Gaussian 3-point rule with Simpson’s 3/8 rule, this approach enhances 
accuracy and efficiency, providing a practical solution for high-precision integration. This 
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contribution holds promise for improving a variety of numerical analysis applications through 
enhanced precision and reliability. 
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