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Abstract 
The Internet of Things (IoT) - embedded vital monitoring revolutionizes the healthcare industry 
by enabling the personalized, continuous time and data driven patient care system. The 
incorporation of the IoT-embedded in the medical systems, promotes the early detection of 
disease, enhances the patient outcomes, and reduces the cost along with the enhanced level of 
accuracy by marking a significant shift towards the preventive and precision medicine. The 
major challenge in the IoT-embedded vital monitoring system is the fault occurrence, leading 
to critical concerns affecting the health of the patients, device functionality and the system 
performance. The fault in the system leads to increase in False Positive (FP) and False Negative 
(FN) rate leading to inaccurate data reading leading to failure in personalized treatment plans. 
To overcome this concern, this research work of detecting the fault in the IoT-embedded vital 
monitoring system using the hybrid Pearson Correlation, Random Forest (RF) classifier and 
the Multi linear Regression (MR) technology. The proposed work is trained using two different 
datasets namely the Kaggle dataset and PhysioNet dataset. Both the datasets are the open access 
datasets and the performance of the proposed work was compared with the performance of the 
state of the art methodologies.  
Keywords: Internet of Things (IoT), Embedded Vital Monitoring system, Pearson Correlation, 
Random Forest classifier, Multi-Linear Regression (MR), Accuracy.  

 
1. INTRODUCTION 

In the present era characterized by incredible technological skill and advancements, the 
healthcare application is transitioning into the realm of digital connectivity through the Internet 
of Things (IoT) [1], which comprises smart wearable sensors and sophisticated Machine 
Learning (ML) [2] algorithms. The advent of the IoT enormously pioneered the advancements 
of healthcare applications. The Internet of Things (IoT) [3] integrated with the wearable sensors 
for performing the continuous health monitoring process the IoT- Embedded vital monitoring 
system was introduced, ease the remote monitoring of the patients along with the earlier 
detection of the human diseases.  The IoT connects the wearable sensors and communicates 
the measurable data for the real time processing like treatment by the physicians. The major 
need for the IoT-Embedded vital monitoring system [4] arises due to the several factors 
reflecting the landscape of healthcare, advancements in the technology and the various desires 
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of the patients. Most countries possess one third of aged people leading to the high prevalence 
chronic diseases like diabetes, cardiovascular diseases, blood pressure, and respiratory 
diseases. These diseases necessitate the continuous monitoring of the vital signs, for an 
effective management of health conditions of the patients. The number of IoT connected 
devices has been exponentially increasing over the past one decade as depicted in Figure 1 [5].  

 
Figure 1: Statistics on Number of IoT devices connected worldwide [5] 

The analysis from the Figure 1, discloses that 75.14 billions of IoT devices were connected 
worldwide which covers wide range of applications namely, healthcare application, monitoring 
purpose, smart home applications etc. One such finest application of the IoT is the IoT-
Embedded vital monitoring system is a technology driven solution designed for the continuous 
monitoring of the patient’s vital signs namely the heart rate [6], blood pressure [7], oxygen 
saturation [8], temperature [9], blood sugar level [10] and the respiratory rate [11]. The vital 
signs have been monitored using the wearable and wireless sensors, which are capable of 
collecting the physiological data and communicates it with the central processing unit such as 
cloud servers or applications for executing the real time analysis. Despite of fruitful 
applications of the IoT, it is essential and challenging that the detection of fault in the IoT-
embedded systems, as the fault in the system or the devices, results in measurement of incorrect 
readings or may not measure the vitals due to sensor failure, resulting in inappropriate decision 
or delayed medical responses. The case of failure of systems leads to the failure in alerting the 
healthcare professionals during the emergency conditions, leading to the critical condition or 
serious risk to the patients. This serious effect results and necessitates the regular detection of 
fault to ensure that the data received are consistent, reliable and is accurate for performing the 
effective monitoring and medical decision making processes.  

Fault detection process [12] ensures that the received alert signals were triggered at the real 
time and is created on necessary condition. This assists in maintaining the trust in the IoT-
embedded vital monitoring system. Numerous methods of fault detection have been introduced 
with wide range of technologies namely the rule based fault detection, model based fault 
detection, signal processing based fault detection, Neural Network [13] based fault detection, 
Fuzzy logic based fault detection. However, the major challenging factors associated with these 
fault detection methods are the limited computational resources, environmental noise and 
interferences, false positive and negatives. To overcome these challenges, this proposed work 
employs the hybrid version of Pearson Correlation, Random Forest (RF) classifier [14] and the 
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Multi linear Regression (MR) technology [15] for the fault detection in IoT-embedded vital 
monitoring system. The contributions of this proposed work is as follows.  

• Pearson Correlation (PC) can be used in the preprocessing phase to determine which 
health parameters (such as heart rate, oxygen levels, etc.) are most relevant for fault 
detection. By filtering out less significant features, the system can focus on key 
variables, which improves the accuracy and efficiency of fault detection models. 

• Random Forest (RF) can accurately classify different types of faults or health 
anomalies based on historical sensor data. 

• Random Forest’s ensemble approach reduces the chances of overfitting and can 
achieve high fault detection accuracy by combining multiple decision trees. This is 
particularly useful in identifying faults that may be missed by simpler models. 

• Multi-Linear Regression (MLR) can help quantify the extent or severity of a fault 
by modeling the relationship between sensor deviations and system performance. 
This is useful for prioritizing critical faults over minor ones. 

 
2. LITERATURE REVIEW 

The increase in the IoT connections and the necessity for the fault detection in the IoT- 
monitoring system motivates various researchers to actively involve in designing solutions for 
the fault detection. The fault detection in IoT-embedded vital monitoring system is a novel 
method introduced in this proposed work and some of the related research results were 
presented here for the definition of the objectives of the proposed work.  

C.Hou et al. (2024) had designed a fault detection system in the sensors by formulating the 
sensors as the Single Input Single Output (SISO) model [16] by sensing the error as the input 
and the output. The model derives the relation between the energy supply and the occurrence 
of the fault in the smart sensors. The algorithm employed the sound theoretical foundations 
based on the optimal energy supply. In addition, the proposed model employed the cyber 
physical system to sense the fault in the sensors. G. Stamatakis et al. (2024) had performed the 
fault detection of the connected IoT devices by Partially Observable Markov Decision Process 
[17]. This process computes the efficiency of the sensor by probing the energy of the system 
and the communication models. In addition, the process adopted the aging information of the 
sensors and the communication models to determine the fault in IoT models. 

 M.Ragnoli et al. (2024) had employed the Artificial Intelligence (AI) [18] for the detection 
of fault in the Computer Numerical Control (CNC) machines. The author implemented the fault 
detection model in detecting the fault in the machineries of the industry. The developed model 
aimed in realizing the multi purpose machine for detection of fault in advance. A.Prakash 
Rawal et al. (2024) had proposed a novel Mobile sink based fault detection model using Q-
learning method to enhance the Network lifetime of the sensors in the WSN. The model 
employed the Genetic algorithm [19] for performing the fault detection process and had 
enhanced the lifetime of the network by performing the prior prediction of the faults in the 
sensor.  

B.Zhou et al. (2024) had proposed a Resilient Sensor Data Dissemination (RSDD) model 
[20] for disseminating the sensor data and to detect the fault in the sensors deployed in random 
manner. The accuracy of the fault prediction is enhanced by minimizing the end to end failure 
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rate in the packet delivery rate. This model employed the hop to hop retransmission process for 
the efficient detection of the fault in the IoT sensors.  A.Sinha et al. (2023) had proposed XAI-
LCS model [21] for the early detection of the faults in the sensor to provide an uninterrupted 
monitoring and to supply the vital data. This model is composed of Artificial Intelligence (AI) 
technique to mitigate the high computational burden in the fault detection process. This model 
identified four different types of faults in the sensor and the accuracy is measured to 99.8%.  

A.Sinha et al. (2023) had proposed a Deep Reinforcement Learning (DRL) model [22] for 
the detection of the various types of the faults occurring in the sensors. This model classified 
the faults in the sensor as bias, drift, complete failure and the precision degradation. The DRL 
model diagnosed and classified the failure under these four categories and had provided an 
accuracy of 96.17% with a minimal computational time. This model had proved its efficiency 
in terms of accuracy, despite of noisy environments. H.Darvishi et al. (2023) had addressed the 
sensor fault detection (SFD) issue by designing a novel framework composed of Deep 
Recurrent Graph Convolutional Network (DRGC) [23] which is the integrated version of graph 
neural network along with convolutional neural networks to detect the faults in the sensors at 
the earlier stage. The framework was trained using the publicly available datasets to exhibit an 
accuracy of 94.13%.  

X.Yang et al. (2023) had introduced a Solar Insecticidal Lamp Internet of Things (SIL-IoT) 
model and had implemented fault self detection scheme [24] for computing the fault at the 
earlier stages. The fault detection scheme is composed of binary based sliding window 
mechanism, which is proved to be possessing minimal false prediction rate with a minimal 
computation time. The accuracy of this model is reported to 99.14% but the model is capable 
of detecting the fault rather than classifying it. G.Kaur et al. (2023) had introduced the Artificial 
Intelligence (AI) model in the earlier detection of the fault in the IoT sensors. The model is 
composed of AI based hyper-parameter tuned least square support vector machine for the 
diagnosis of the fault with an high level of accuracy. The AI model implemented the 
Reinforcement Learning (RL) [25] method for the earlier prediction of the fault. This model 
exhibited its supremacy with minimal false alarm rate and with better F1 score and minimal 
energy consumption.  

Despite of various novel methodologies in detecting the fault in the IoT sensors, the 
drawback of sensor/ node failures persist exhibiting the following challenges in the existing 
state of the art methodologies.  
• IoT devices may capture noisy data due to various factors, such as sensor malfunction, 

poor connectivity, environmental conditions, or device wear and tear. 
• Traditional fault detection mechanisms often struggle with high rates of false positives or 

false negatives, leading to either unnecessary alerts or failure to detect actual faults. 
• Monitoring systems often involve large and complex data streams, making fault detection 

harder to analyze accurately.  
• IoT devices often have limited computational and battery power, which makes it difficult 

to implement complex fault detection algorithms without draining resources. 
• Traditional systems may not adapt well to dynamic changes in the environment, user 

behavior, or device performance, leading to inaccurate fault detection. 
To overcome these challenges, this research work was proposed with the following objectives.  
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• To Identify and filter out noisy or irrelevant data by focusing on highly correlated 
variables using Pearson Correlation (PC). 

• To employ Pearson Correlation method for detecting abnormal correlations between 
multiple sensor readings, which might indicate faults or malfunctioning sensors 

• To employ Random Forest (RF) classifier method for distinguishing between faulty and 
non-faulty conditions by learning from labeled datasets. 

• To predict potential faults based on the relationships between multiple sensor variables 
and the likelihood of fault occurrence using Multi-Linear Regression (MLR) 

 
3. PROPOSED WORK 

The proposed work of detecting the fault in the IoT-embedded vital monitoring system is 
of three folded method composed of Pearson Correlation for noise filtering process, Random 
Forest (RF) classifier for performing the classification process among the faulty and non-faulty 
nodes and Multi Linear Regression (MLR) for finest classification among the critical and 
normal faults. The proposed model for the fault detection in the IoT-Embedded vital monitoring 
system is initially composed of ‘n’ number of sensor nodes, which is capable of measuring the 
vital signs of the human body. The data captured by the sensor nodes were communicated to 
the cloud dataset through the IoT gateway. The cloud server acts as a central repository, from 
which the fault diagnosis and the corresponding follow up actions by the physicians were 
performed. The architecture of the proposed fault detection model is depicted in Figure 2. 

 
Figure 2: Architecture of the Proposed Fault Detection Model in IoT-Embedded Vital 

Monitoring System 
The proposed fault detection model is composed of seven consecutive processes namely the 
data pre-processing, feature extraction, fault detection using Pearson Correlation (PC), fault 
classification using Random Forest (RF) classifier, fault prediction using Multi-Linear 
Regression (MLR) method followed by the decision making process. The final phase of the 
proposed model is the life cycle and predictive management process, which is the feedback 
action of the proposed work to replace or maintain the embedded nodes. The sensor nodes for 
the vital monitoring systems were placed on the human body which was communicating to the 
cloud server using LoRaWAN protocol, which is capable of communicating for long range. On 
an average, ‘n’ number of different types of sensors have been placed in contact with the human 
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body to measure the common vitals namely, human blood pressure, heart rate, body 
temperature, respiratory rate, along with the critical vitals blood oxygen saturation, 
electrocardiogram, blood glucose level, sleep pattern and accelerometer. The different types of 
sensors were physically connected to the human body and are made to communicate to the 
cloud server. The cloud server provides access to the physicians, guardians for proceeding with 
the further actions. In addition to these follow up actions, it is essential to identify the lifetime 
of the sensor nodes along with the working condition namely the fault detection in the vital 
measuring sensor nodes.  
3.1 Data Pre-processing 

The initial process of the fault detection is the pre-processing stage, concentrating on the 
data cleaning, data normalization, time synchronization and finally ends up with the feature 
extraction process. The significance of performing the data pre-processing is the cleaning of 
data which has been recorded in the real time environments. The sensors are capable of 
performing continuous time monitoring of various physiological parameters namely the heart 
rate, blood pressure and blood oxygen levels. The data captured through these sensor nodes are 
highly prone to the noise and interference concerns due to the existing environmental factors. 
The initial process is the data cleaning, involves mathematical technique for handling the 
missing values, smoothening the noise and removal of outliers. The most common approach of 
handling the missing values from the sensor nodes is the mean imputation process, in which 
the missing values are determined and placed using the mathematical linear interpolation of 
observed values as defined in equation 1. Let the data communicated by the various nodes to 
the cloud server through the IoT gateway is the DN, where DN= { DN1, DN2, DN3,… DNn}. The 
DN is the cumulative data stored in the cloud server, is a mixture of multiple types of data 
observed and communicated by various nodes N1, N2.. Nn (n number of nodes). 

            (1) 

Where,  is the incomplete of missing values and  is the available observed values. 
The term  is the total number of non-missing observations. The values were observed at 
various time intervals and were linked using the linear interpolation process as defined in 
equation 2. 

      (2) 

Where,  is the observed values over a defined period and is considered as the 
interpolation of values between two different time intervals. The data handling process is 
followed by the noise reduction process using the Exponentially Moving Average (EMA) 
method. The EMA is a technical analysis method of data present in the cloud server. This 
method assigns weightage to the sensor data, to make it more responsive for the variations in 
the underlying data. The EMA of the data is measured at various time intervals and it is the 
function of the previous EMA function as defined in equation 3. 

        (3) 

Where,  is the exponential moving average value of the data measured at time ‘t’, 
while  is the exponential moving average value of the data measured at time ‘t-
1’. The term ‘ ’ is the smoothing factor ranges from (0,1) and is determined through 
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, in which the ‘W’ is the chosen window size. The data cleaning process is 
followed by the outlier removal process using the Z score. The Z score method employs the 
threshold value in the data DN and the data which are deviating from the threshold value were 
removed as defined in equation 4. 

            (4) 

Where,  is the data of the sensor node with  as the mean and  is the standard deviation. 
The data cleaning process is preceded by the data normalization process to ensure that all the 
data from the sensor are on a similar scale. This normalization process assists in enhancing the 
performance of the proposed PC, RF and MLR algorithms. The normalization process is 
performed using the Min-Max normalization process as defined in equation 5. 

         (5) 

Where,  is the normalized data, while  are the maximum and 
minimum values of the observed data. The data normalization process is followed by the 
feature extraction process, performed on the basis of time and frequency domain analysis to 
extract the feature on the basis of the time domain. The reason for choosing time and frequency 
domain basis over the statistical basis, is the behavior and the life time of the sensor nodes 
varies from time to time as the statistical analysis is not suitable for the fault detection process. 
The features of the sensor data were measured on the basis of Root Mean Square (RMS), Peak 
to Peak amplitude, and zero crossing rate. The fourier transformation and wavelet 
transformation techniques were employed for the analysis in terms of frequency domain. The 
mathematical representation of the time domain analysis is defined in equations 6. 

          (6) 

The peal to peak amplitude is defined using the maximum and the minimum value of the 
normalized data as defined in equation 7. 

         (7) 
The zero crossing rate of the time series data is measured based on the consecutive points 

of related data and is defined in equation 8. 
       (8) 

In turn, to analyze the available sensor data in the cloud server, the fourier transformation 
method is employed as represented in equation 9. 

        (9) 

Where,  is the normalized data measured in time domain and  is the 
converted normalized data in frequency domain. It is essential to determine the behavior of the 
sensor in the discrete domain and hence the Discrete Wavelet Transformation (DWT) is 
employed to define the normalized data in the wavelet basis function as represented in equation 
10. 

       

 (10) 
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 (11) 
Where,  is the coefficient of the normalized data,  is the wavelet basis 

function,  is the autocorrelation among the normalized data and  is the lag factor. 
The preprocessed data is fed to the feature selection using the Pearson Correlation (PC) method.  
3.2 Fault Detection using Pearson Correlation (PC) method 
Pearson Correlation (PC) is the statistical measure quantifying the linear relationship among 
the two variables ranging from (-1, +1). The value in the range ‘-1’ defines the negative 
correlation, while ‘0’ represents the no correlation process and ‘+1’ defines the positive 
correlation as depicted in Figure 3. 

 
Figure 3: Pearson Correlation for fault detection using data similarity identification 

The term correlation in this PC defines that one variable is increasing while the other decreases 
in the negative correlation, while the positive correlation mentions if both the variables are 
increasing in nature. The PC method detects the faults in the IoT embedded vital monitoring 
system by determining the correlation among the readings observed by the sensors at various 
time intervals. The correlation analysis among the sensor reading determined by the Pearson 
Correlation is performed by determining the coefficients between the pair of the sensor 
readings. The Pearson correlation coefficient between two sensor data streams Di and Dj are 
defined in equation 12. 

         

 (12) 
Where, Di and Dj are the individual data points from the same sensor at two different instant, 

 is the mean of Di value and  is the mean of Dj value.  

Similarly,           

 (13) 
And            

 (14) 
The range of correlation coefficient is classified in the range [-1,+1] defining,  

• Perfect Negative linear relationship 

• ; No linear relationship 

• Perfect Positive linear relationship. 
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The variance of the two data points of the similar sensor is determined using the covariance 
function as defined in equation 15. 

       

 (15) 
The variance of the Di and Dj are determined using the mathematical relationship defined in 
equation 16 and 17. 

         

 (16) 
         

 (17) 
The Pearson Correlation Coefficient in terms of covariance and variance among the two data 
points is defined in equation 18. 

          

 (18) 
The fault of the IoT-embedded vital monitoring system is detected using the variance exhibited 
by the sensors. The classification of the fault is performed using the Random Forest (RF) 
classifier.  
3.3 Fault Classification using Random Forest Classifier 
The Random Forest (RF) classifier is used to classify the fault identified by the Pearson 
Correlation method. The fault is classified into critical fault and normal/minor fault in the IoT-
embedded vital monitoring system. The Random Forest is the widely employed Machine 
Learning (ML) algorithm employed for the classification application and is well known for its 
ability to handle the complex datasets with noisy and missing values. The RF algorithm 
functions on the basis of decision tree process as depicted in Figure 4. 

 
Figure 4: Random Forest in classifying the Fault from the dataset 

Random Forest is considered as the suitable classifier for this method of fault detection, as the 
cloud dataset is composed of complex types of data received by diversified sensor types and 
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the data may be with noise and consists of incomplete or missing values. The RF classifier 
operates to perform decision making process by constructing the multiple decision trees and 
the mean prediction from the decision trees. In the RF method of fault classification process, 
the bootstrapping method is the initial process, in which each decision tree Ti for the bootstrap 
sample Di from the normalized original dataset Dnorm. The decision tree Ti is created by 
performing the sampling process of the data with replacement mechanism. The tree 
construction process is performed by training the subset of features in the cloud data. The major 
criteria employed for tree construction process is through the computation of the gini impurity 
or entropy as defined in equation 19. 

        

 (19) 
Where,  is the proportion of the samples corresponding to the samples ‘i' and 

‘j’. The entropy of the data from any node is determined as in equation 20. 
        

 (20) 
The primary objective for dividing the data at each sensor node is to minimize the gini impurity 
or the entropy. Based on the gini index value, the fault has been classified as represented in 
equation 21. 

        

 (21) 
The fault classification is performed on the basis of the gini index, and is the gini index is 
greater than the threshold gini, then the fault is classified as the critical fault, else it is classified 
as the normal fault.  
3.4 Fault prediction using Multi-Linear Regression 
The final phase of the proposed model is the fault prediction of the Multi-Linear Regression 
(MLR) method, determines the linear or non linear relationship between the multiple variables 
of the sensor observed values, which were independent in nature with the dependent variable 
of fault probability. The MLR method assumes the linear relationship among the input variables 
{D1, D2,…Dn} which were recorded by the various types of sensors and the output P{ }, 

which the probability of occurrence of the fault. The linear relationship for the occurrence of 
the fault is defined in equation 22. 

       

 (22) 
Where,  is the probability of the occurrence of the fault in the IoT embedded vital 

monitoring systems, , ..  are the independent data variables recorded by various types of 
sensors,  is the intercept while  are the multi-linear regression coefficients 
representing the contribution of the each embedded node towards the output. The term  is the 
error term, representing the residuals. The coefficients of the MLR are estimated using the least 
square estimation method minimizing the sum of squared residuals as defined in equation 23. 
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 (23) 
Where, the  is the actual fault,   are the MLR coefficients of the 
independent data for ‘n’ number of samples. The algorithm for detecting the fault in the IoT-
embedded vital monitoring system is presented in Table 1. 

Table 1: Algorithm for fault detection and classification using PRM method 
Algorithm: Fault Detection and Classification using Pearson Correlation, Random Forest 
and Multi Linear Regression (PRM) method 
Input: Embedded Sensor data DN= { DN1, DN2, DN3,… DNn} 
Output: Fault Classification; Probability of fault occurrence P{rij} 
Processes:  

1: Initialize the number of sensor nodes ‘n’ 
2: Initialize the time interval for data measurement ‘t’ 

3: Predict missing values using    

4: Determine Exponental Moving Average function: 
 

5: Normalize the input data:  

6: Perform Outlier detection 

7: Determine RMS of normalized data:  

8: Determine peak to peak amplitude:  

9: Determine Zero crossing rate:  

10: For node (i=1, i++, i<n) 

11: Determine Pearson Correlation Coefficient:  

12: If ( ), then Return, “Negative linear relationship” 

13: Else if (  then Return, “No Linear Relationship” 
14: Else if ( then Return, “Positive Linear Relationship” 
15: Determine Covariance among data: 

 

16: Determine Gini index:  

17: Entropy of gini index:  

18: If ( ; Return, “Critical Fault” 

19: Else if ( ), Return, “Normal Fault” 

20: Determine Linear Relationship:  

21: If (  > ), Probability >0.5; Fault occurrence 
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22: Else if (  < ), Probability <0.5; Least Fault occurrence 

23: End if  
24: End if  
25: End for 
26: End processes 

 
The fault occurrence in detected followed by the decision making process, which involves 

two processes namely the life cycle management and predictive management process which 
involves the replacement of the dead nodes with the new ones or to perform the repairing 
mechanisms in the embedded monitoring nodes.  
 
4. PERFORMANCE ANALYSIS AND DISCUSSION 

The proposed work was trained using two different datasets namely the Kaggle dataset and 
the PhysioNet dataset for the training process. The dataset is composed of various data from 
different types of sensors like heartbeat sensor, temperature sensor, blood pressure sensor etc. 
Among the entire data, 80% of data have been used for training process while 20% data have 
been used for testing process. The performance of the proposed work is measured in terms of 
accuracy, precision, recall and F score. In addition to these vital parameters, the proposed work 
is analyzed in terms of Root Mean Square Error and is compared with the existing state of art 
methods like, Multi-Scale Fusion Neural Network (D.K. Reddy Basani, 2024), Convolutional 
Neural Networks (B. Aljafari, 2024), Recurring Neural Networks (I.S. Ramírez, 2024), Support 
Vector Machine (L.Hou, 2024), and CNN+BiLSTM (R. Laythkhaleel, 2024).  

The accuracy is the vital parameter defining how perfectly the proposed model predicts the 
fault. In the realm of this fault detection framework designed for an IoT-integrated vital 
monitoring system, accuracy signifies the fraction of overall forecasts generated by the model 
that hit the mark. This vital performance indicator measures the model's prowess in accurately 
discerning both typical and defective conditions derived from the sensor data gathered from 
the monitoring apparatus. The mathematical expression for determining the accuracy is defined 
in equation 24. 

          

 (24) 
Where, TP is the True Positive, TN is the True Negative, FP is the False Positive, FN is the 

False Negative. The parameter next to the accuracy is the precision, defines the measure of rate 
of correct prediction of faulty instances out of all occurring instances predicted as the faulty. 
The mathematical expression of the precision is defined in equation 25. 

           

 (25) 
Recall assesses the fraction of genuine faulty occurrences that the model successfully 

recognizes. It emphasizes the model's prowess in spotting faults when they arise and aids in 
reducing false negatives (overlooked faults). A high recall signifies that the model excels in 
fault detection and diminishes the tally of undetected faults (overlooked faults or false 
negatives). Conversely, low recall suggests that the model is overlooking numerous faulty 
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instances, which could be critical in essential monitoring systems where failure to detect a fault 
could lead to dire outcomes. The F1 Score represents the harmonic average of precision and 
recall. It delivers a unified performance indicator that harmonizes both recall and precision, 
particularly when there is a lopsided distribution of faulty and normal instances. A lofty F1 
score indicates that the model boasts both high precision (minimal false alarms) and high recall 
(few missed faults). This becomes crucial in skewed datasets (where normal instances 
significantly outnumber faulty ones), as it guarantees the model performs admirably in both 
fault detection and avoiding excessive false alarms. A low F1 score denotes that the model is 
either neglecting numerous faults (low recall) or generating an abundance of false alarms (low 
precision). The mathematical expression for the recall and F1 score are defined in equation 26 
and 27.  

           

 (26) 
         

 (27) 
In addition to these parameters, the Root Mean Square (RMS) error is measured to 

determine the average of the squared difference among the actual and the predicted values as 
presented in equation 28. 

         

 (28) 
The proposed model is analyzed for the two different types of datasets and the observed 

values are listed in Table 2. 
Table 2: Performance analysis- Two different datasets 

Parameters Kaggle PhysioNet 
Accuy 96.21% 95.14% 
Precn 95.59% 94.26% 
Recal 95.31% 94.06% 

F1 Score 94.16% 93.39% 
RMSE 0.0821 0.0974 
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Figure 5: Performance comparison- Two different datasets 

The Kaggle dataset seems to surpass the PhysioNet dataset in identifying faults within an 
IoT-integrated vital monitoring system, as reflected by its superior scores in accuracy, 
precision, recall, and F1 measure. Datasets from Kaggle are frequently crafted with great care, 
showcasing meticulously organized data and accurate labeling. This meticulousness aids in the 
development of more precise models, as there are fewer erroneous or inaccurately labeled data 
points, resulting in enhanced fault detection capabilities. While PhysioNet datasets are 
esteemed for their medical insights, they may carry more noise or discrepancies stemming from 
the processes of real-world data collection, potentially impacting model efficacy. The 
performance of the proposed work is compared with the existing state of the art methodologies 
to prove the supremacy of the proposed work. The observed values were listed in Table 3. 

 (D.K. Reddy Basani, 2024), (B. Aljafari, 2024), (I.S. Ramírez, 2024), (L.Hou, 2024), and 
(R. Laythkhaleel, 2024) 

Table 3: Performance analysis- Different Methodologies 
Parameter

s 
Multi-
Scale 

Fusion 
Neural 
Networ
k [26] 

Convolution
al Neural 
Networks 

[27] 

Recurrin
g Neural 
Networks 

[28] 

Suppor
t Vector 
Machin
e [29] 

CNN+BiLST
M [30] 

Propose
d Work 

Accuy 80.14% 81.21% 82.06% 79.21% 83.16% 96.21% 
Precn 79.54% 80.48% 81.62% 79.01% 82.30% 95.59% 
Recal 78.64% 79.03% 80.14% 78.74% 81.62% 95.31% 

F1 Score 79.08% 79.74% 80.87% 78.87% 81.95% 94.16% 
RMSE 0.0921 0.0922 0.0984 0.0992 0.0994 0.0821 
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Figure 6: Performance comparison of proposed work with existing works 

The Pearson correlation unveils the intricate linear connections between the input features 
(such as sensor outputs) and the target variable (fault or no fault). By assessing the strength of 
these correlations, this technique aids in pinpointing the most significant features that exhibit 
a strong relationship with fault occurrences, thereby filtering out the clamor of irrelevant or 
weakly linked attributes. By handpicking essential features based on their correlations, Pearson 
correlation mitigates overfitting, bolsters model interpretability, and amplifies the efficiency of 
Random Forest and Multilinear Regression models by engaging with more insightful data. 
Random Forest achieves remarkable accuracy by curtailing overfitting, a frequent pitfall in 
standalone decision trees. Its strategies of bootstrapping and feature randomness guarantee that 
the model adapts splendidly to unseen data, rendering it robust for fault identification. It adeptly 
manages high-dimensional data, a hallmark of IoT systems with their plethora of sensors 
generating continuous streams of information. Random Forest enhances accuracy, precision, 
and recall by skillfully navigating the complexities of high-dimensional IoT data. It shows 
resilience against noise and irrelevant features, particularly after Pearson correlation has sifted 
out the weaker elements. The model’s linear characteristic ensures it operates with 
computational efficiency and clarity, making it straightforward to discern how sensor data 
contributes to fault detection. The straightforwardness and interpretability of Multilinear 
Regression establish a sturdy foundation for grasping the linear relationships between sensors 
and faults. Additionally, it complements Random Forest by illuminating linear dependencies. 
 
5. CONCLUSION AND FUTURE WORK 

In the digital era, the smart monitoring of the human health is essential, thus the IoT-
embedded vital monitoring system plays a major role in performing the continuous monitoring 
on the vital parameters of the human body. It is essential to measure the fault and continuous 
management of the embedded resources to perform tireless monitoring of the human body. This 
proposed research work incorporates the hybrid Pearson Correlation, Random Forest and 
Multi-Linear Regression method of detect the fault and classify the fault more effectively than 
the existing methodologies. The performance analysis of the proposed work exhibits 96.21% 
of accuracy, 95.59% of Precision, 95.31% of recall, 94.16% of F1 score and minimum of 
0.0821 Root Mean Square Error. The synergy of Pearson correlation, Random Forest, and 
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Multilinear Regression within fault detection frameworks fosters resilient feature selection, 
formidable non-linear modeling, and comprehensible linear regression. Collectively, these 
methodologies elevate fault detection capabilities by enhancing accuracy, minimizing 
overfitting, adeptly managing intricate sensor data, and delivering understandable results. This 
synergy renders it perfectly suited for real-time IoT-embedded systems, where both 
computational agility and reliability are paramount. The performance of the proposed work 
shall be enhanced by incorporating non-linear transformation techniques, and to incorporate 
boosting algorithms for a better level of accuracy in detecting the faults.  
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