

 1371

REINFORCING SOFTWARE VERIFICATION: STATIC CODE ANALYSIS
FRAMEWORKS AND TOOLCHAINS

Dr. Pallavi Mandhare

Department of Computer Science, SPPU. Email: mandharepa@gmail.com

Abstract
 Static code analysis tools are pivotal for identifying and mitigating software vulnerabilities,
which significantly reduces development costs and enhances efficiency. By automating the
detection of potential issues, these tools eliminate the need for extensive manual code reviews
and streamline the development process, allowing programmers to focus on creating robust and
secure software solutions. This paper explores the capabilities of static code analysis tools,
particularly their role in detecting common software vulnerabilities. A comparative study
evaluates various tools based on scalability, accuracy, usability within integrated development
environments (IDEs) and optimizing software verification processes. The findings reveal that
combining multiple static analysis techniques, such as abstract interpretation, data flow
analysis, and program slicing can enhance software reliability and security. Machine learning
approaches, including clustering for categorizing similar bugs and supervised learning for
identifying vulnerabilities can be the part of tool to enhance the accuracy and effectiveness of
these tools.

Keywords: Abstract Interpretation, Program Slicing, Data Flow Analysis, Static Analysis,
Software Security, Machine Learning, Program Verification.

1 INTRODUCTION

In era of digital connectivity, ensuring correctness and security of software systems is most
important, especially as software becomes the backbone of critical applications such as nuclear
plant monitoring, autonomous vehicles, medical devices and financial systems. Unlike
hardware components, which undergo rigorous physical testing, software often presents more
significant challenges in guaranteeing quality due to its inherent complexity and susceptibility
to vulnerabilities [1]. Software vulnerabilities can result in severe security failure, potentially
causing system failures, unauthorized access and data leaks. For example, buffer overflow
vulnerabilities typically arise from improper memory handling, such as failing to implement
boundary checks for fixed-size buffers [4,7,10,15]. Such issues underscore the importance of
systematic methods to detect and eliminate software vulnerabilities early in the development
lifecycle. This necessity has led to the development of various program analysis techniques,
broadly categorized into two main types: static program analysis and dynamic program
analysis.

International Journal of Innovation Studies 9 (1) (2025)

 1372

 Static program analysis (SPA) inspects code without executing it, focusing on its structure
and behaviour by analyzing the source code or bytecode. This method is particularly effective
in detecting vulnerabilities, coding errors, and quality issues before the software runs [11,20].

 Dynamic Analysis, in contrast, entails executing the program and observing its behaviour
during runtime. Dynamic analysis tools inspect the actual behaviour of a program, often
looking for memory leaks, performance bottlenecks, or runtime exceptions.
By applying methods like control flow analysis and data flow analysis, SPA tools can identify
critical issues—such as uninitialized variables, resource leaks, and infinite loops during the
development phase. These techniques reduce the efforts on time-consuming manual code
reviews, enabling developers to improve software quality and enhance security. By detecting
vulnerabilities early, SPA mitigates the risks associated with runtime errors and external
attacks, ultimately reducing development and maintenance costs [12]. However, SPA is not
without its limitations. For instance, static tools can produce false positives, flagging issues
that do not actually pose a risk, which may lead to unnecessary debugging efforts. Additionally,
they sometimes struggle to fully analyze dynamic aspects of the code, such as runtime
dependencies and input/output interactions, which are often critical in complex applications
[27].
Static Program Analysis (SPA) tools like Clang (built on LLVM), FindBugs, and SonarQube
are integral to modern software development. They analyze code prior to execution, providing
immediate feedback and enabling early error detection within continuous integration (CI)
workflows [14].
Clang, a widely adopted open-source compiler, includes built-in static analysis to detect issues
such as memory leaks and uninitialized variables at compile time. FindBugs targets Java
applications, identifying potential flaws—particularly concurrency and thread safety
problems—before runtime. SonarQube, widely used in CI environments, continuously assesses
code quality, flags security vulnerabilities, and identifies code smells.
SPA offers a proactive alternative to traditional testing by catching issues early, reducing the
effort and cost of debugging during later development stages or post-deployment. This is
particularly valuable in agile development, where rapid and iterative changes are frequent. As
shown in Fig. 1, development cycles now involve multiple feedback loops and minor iterations,
reflecting increasing complexity. Beyond security, SPA complements compiler optimizations
by exposing structural inefficiencies in the code. While compilers apply techniques like loop
unrolling and memory optimization to improve runtime performance, SPA helps developers
refactor code that might otherwise block such optimizations.
Together, static program analysis (SPA) techniques enhance both software performance and
security [16]. In high-performance systems, SPA identifies redundant or inefficient code
patterns that compilers can subsequently optimize for faster execution [3].
Recent advancements in machine learning have further strengthened SPA by automating the
detection of complex patterns, anomalies, and security vulnerabilities that traditional rule-
based methods may missed or excluded.
Over time, SPA has become a core component of modern software development
methodologies. Leading organizations such as NASA rely on static analysis tools to ensure
software reliability and robustness.

International Journal of Innovation Studies 9 (1) (2025)

 1373

Figure 1 Code Review Cycle [21]
This paper focuses on SPA techniques, tools, and their impact on software quality and security.
It highlights methods like abstract interpretation, program slicing, and data flow analysis,
demonstrating how they reduce development costs and mitigate vulnerabilities. Additionally,
the paper addresses key challenges in SPA adoption, such as managing false positives and
integrating analysis within contemporary development workflows, offering practical strategies
to overcome these issues.
The structure of the paper is as follows: Section 2 presents the fundamentals of SPA, Section 3
reviews key SPA techniques, Section 4 explores commonly used SPA tools, Section 5 discusses
the integration of machine learning in static analysis, and Section 6 concludes the study.

2. FUNDAMENTALS OF STATIC PROGRAM ANALYSIS
Static Program Analysis (SPA) plays a vital role in software verification, helping detect
vulnerabilities, enforce coding standards, enhance performance, and ensure code correctness
prior to deployment. Rooted in formal methods, type theory, and mathematical abstractions,
SPA enables automated reasoning about program behavior. Given that many behavior-related
properties are undecidable or computationally hard, SPA aims to produce sound, efficient
approximations that avoid misleading downstream analyses.
Due to the diversity of approaches addressing various aspects of program behavior,
representing the entire landscape of SPA techniques is inherently complex. Nonetheless, Fig. 2
provides a high-level overview of widely adopted categories, offering insight into the breadth
of static analysis methods in use today.
Modern software industries increasingly adopt SPA tools to tackle challenges such as
scalability, accuracy, and seamless integration with Integrated Development Environments
(IDEs) and Continuous Integration (CI) pipelines.
Many modern programming languages, especially statically typed ones, can detect bugs during
compilation. Although testing has long been a standard method for identifying defects, it cannot
guarantee the discovery of all bugs and is typically applied later in the development cycle. In
addition to testing, techniques such as Formal Verification and Data Flow Analysis are also
employed to improve software reliability [28].
Static Program Analysis (SPA) refers to analyzing code without executing it, typically during
compilation. SPA tools compute information about the program’s structure and behavior, which
can then be leveraged by dynamic analysis to better understand runtime behavior.
While static analysis operates at compile time to infer the potential behavior of code, dynami
 c analysis is performed during execution to observe how the program behaves in real
environments. Importantly, these techniques can complement each other: SPA can provide

International Journal of Innovation Studies 9 (1) (2025)

 1374

input to dynamic analysis, and in turn, dynamic analysis results can inform or enhance static
predictions, such as estimating likely execution paths or runtime behavior [2].

Figure 2 Static Program Analysis Technique’s Overview
As per Fig.3, the input to the static analyzing techniques is the code/program. The output is
shown such that, whether there are any mistakes in the given code without executing it. i.e.
static analysis helps to fix the problem in the code to make the code safer and more reliable
during execution. The primary function of static analysis is to detect and indicate code issues.
Issues can include (not the coding standards) having dead code and unused data, dereference
of a null or void pointer, security issues, infinite loops, and other arithmetic problems.

Figure 3 Static Program Analysis Overview

3. STATIC PROGRAM ANALYSIS TECHNIQUES

There are many run-time problems/issues, even compilers may not able to discover them. These
problems/issues can be potentially identified by using SPA. Some of the examples are as
follows: Resource Management, Wrong Operations, Dead Code, Incomplete Code.
These issues have a significant impact on the source code’s operation and can lead to failures.
Previously, the lexical analyzer was used to tackle static analysis, but now we have techniques
and their tools to assist us in analysis, and they work better. In the following sections, we will
discuss the different techniques available for automated static analysis, as well as certain
metrics that can be used to examine these various tools.

Source Code

Techniques

Abstract
InterpretaƟon

Control Flow
Graph

Data Flow
Analysis

Program behaviour and

Suggest Changes in the Code

International Journal of Innovation Studies 9 (1) (2025)

 1375

3.1 Abstract Interpretation

Abstract interpretation is a static program analysis (SPA) technique based on programming
language semantics. It maps programs to mathematical abstractions that approximate input-
output behavior, enabling the extraction of insights without requiring exact execution modeling
[8, 22, 26].
This technique supports early detection of runtime errors, security vulnerabilities, memory
safety issues, and performance bottlenecks. By choosing appropriate abstract domains, analysts
can balance precision and efficiency, making the approach suitable for a wide range of
verification tasks. Common domain types include: Numerical (e.g., interval, polyhedral),
Logical and predicate-based, Memory and heap-focused, Control-flow, Security-oriented.
Despite its versatility, abstract interpretation faces challenges with scalability and
computational overhead. Highly precise domains increase analysis time, while simpler
abstractions may introduce false positives. To address this, recent work explores hybrid
approaches, combining abstract interpretation with machine learning, model checking, and
symbolic execution to improve both precision and practicality [23,24]. Abstract interpretation
remains fundamental to formal verification, compiler optimization, and software security,
valued for its theoretical rigor and adaptability to real-world systems.
A key application involves numerical abstractions, such as interval and polyhedral analysis,
which track variable ranges to detect arithmetic errors like division by zero, integer overflows,
and buffer overflows—frequent sources of system failures.
The technique is grounded in Galois connections, which formally relate concrete semantics
(actual execution behavior) to abstract semantics (safe approximations). For example, in C
programs involving arithmetic, interval analysis can statically detect errors that might
otherwise cause unpredictable crashes at runtime.

Figure 4 C Program Code for Abstract Interpretation: division by zero and integer overflows
In the code (Fig. 4), x = 0 leads to division by zero, and x > 0 causes integer overflow on 32-
bit systems. Manually detecting such errors at scale is impractical, highlighting the need for
static analysis like abstract interpretation. Interval analysis abstracts numerical variables
as ranges [l,u], tracking value bounds instead of exact values. For compute(int x), these
intervals are propagated through the program as shown in Tab 1.
Table 1 Interval analysis data propagation

International Journal of Innovation Studies 9 (1) (2025)

 1376

Each operation modifies the interval as follows:
 Addition: [a, b] + [c, d] = [a + c, b + d]
 Multiplication: [a, b] * [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
 Division: [a, b] / [c, d] is undefined if 0 ∈ [c, d], triggering a division by zero alarm.
Applying these rules, Abstract Interpretation detects that:

 100 / x is unsafe when x ∈ [-∞, ∞] (potential division by zero).

 INT_MAX + x exceeds integer limits, triggering an overflow warning.
This example demonstrated how abstract interpretation using interval analysis effectively
detects arithmetic errors in C programs. By approximating variable ranges, it enables early
detection of division by zero and integer overflows, improving software reliability in safety-
critical applications.

3.2 Program Slicing

Program slicing identifies code statements relevant to a particular computation, defined by a
slicing criterion ⟨p, v⟩, where p is a program point and v is a set of variables [37]. A slice
includes all statements that potentially affect the value of v at p, aiding in error localization and
debugging [33]. Using Weiser’s algorithm, slices are created by removing irrelevant statements
while preserving program executability. A valid slice must: remain executable, preserve the
computation of v under the same input as the original program p.
Slicing is typically computed using the Program Dependence Graph (PDG), which combines:
Control Flow Graph (CFG), Control Dependence Graph (CDG), and Data Dependence Graph
(DDG).
These are derived from the program’s Abstract Syntax Tree (AST) and used to analyze control
and data dependencies. In PDG-based slicing, reachable nodes from the slicing criterion are
included in the slice via graph traversal.
PDGs provide a unified representation of control and data dependencies, enabling not just
slicing, but also code optimization and software testing. For example, in detecting SQL
injection vulnerabilities, traditional static analysis may over-approximate taint propagation,
causing false positives. Program slicing improves precision by isolating only the paths that
influence both user input and database queries, as illustrated in the following C code example.

International Journal of Innovation Studies 9 (1) (2025)

 1377

Figure 5 C program for SQL injection
Program slicing identify (Fig. 5) whether user_input at S4 can reach the database query at S2,
causing a potential SQL injection and eliminate unnecessary code to improve analysis
efficiency. The PDG and analysis of the data and control dependencies in the program is shown
as below:
In the Fig. 6(a) data dependencies are shown input at (S1) → query at (S2) (through sprintf);
query at (S2) → execute_query at (S3) and in Fig. 6(b) control dependencies are shown.
main() calls get_user_input() (S4) and process_query() (S5). After performing backward
slicing from the database query at (S2) following constraints are considered:
 Slicing Criterion: (V = input, L = S2)
 Backward dependencies:
 query at (S2) depends on input at (S5).
 input at (S5) depends on user_input at (S4).
 user_input at (S4) comes from get_user_input() at (S1).The unrelated code is removed (e.g.,
other functions, unused variables) shown in fig. 7.

Figure 6(a) Control Dependencies; (b) Program Dependence Graph for Program Slicing

International Journal of Innovation Studies 9 (1) (2025)

 1378

Figure 7 Program after removing unrelated code
3.3. Control Flow Graph (CFG) and Data Flow Graph (DFA)

A Control Flow Graph (CFG) is a directed graph where nodes represent program statements or
basic blocks, and edges indicate control flow. Each CFG has a single entry and exit node,
modeling all possible execution paths from start to end [17]. CFGs support optimizations such
as dead code elimination, loop unrolling, and branch prediction, and are valuable in security
analysis (e.g., identifying paths to buffer overflows).
A Program Dependence Graph (PDG) extends CFGs by incorporating data and control
dependencies between statements. While effective for intra-procedural slicing, PDGs are
limited to single procedures [18]. To overcome this, researchers introduced the System
Dependence Graph (SDG), which extends PDGs to support inter-procedural slicing by
modeling dependencies across procedure boundaries. SDGs are widely used in program
comprehension, optimization, and software testing [19].
Data Flow Analysis (DFA) tracks how data moves through a program and is fundamental to
many compiler optimizations. Common DFA tasks include live variable analysis, constant
propagation, common subexpression elimination, and dead code detection. DFA is also
employed by editors and debuggers to identify static semantic errors. During inter-procedural
optimizations, data-flow information must be updated to reflect changes across separately
compiled modules.
As illustrated in Fig. 8, control flow transitions from S1 to S2, which branches to S3 or S4
based on a condition. Both paths converge at S5, which prints the final value. Such flow graphs
aid in precise analysis of execution behavior.

International Journal of Innovation Studies 9 (1) (2025)

 1379

Figure 8 Control Flow Graph of the C program
As shown in Fig. 8, S1 initializes x, followed by a conditional branch in S2 that leads to either
S3 or S4. Both paths converge at S5, which prints x. Control Flow Analysis (CFA) helps
identify dead code, unreachable branches, and supports compiler optimizations like loop
unrolling, inlining, and branch prediction. It is also used in security analysis to detect paths
leading to buffer overflows or privilege escalation.
Data Flow Analysis (DFA) tracks how data propagates through a program and is widely used
in compiler optimizations, debugging, and static error detection. When inter-procedural
optimizations are applied across separately compiled units, data-flow information must be
updated to reflect changes.
DFA operates over a Control Flow Graph (CFG), where nodes represent statements and edges
represent execution order. The analysis involves: Fact collection (via GEN/KILL sets),
Equation formulation, based on direction (Forward analysis: data flows from entry to exit,
Backward analysis: data flows from exit to entry). DFA answers questions like: Which
variables are used or defined in each statement? Which are live at each point? Which statements
affect a given variable? [14, 36].
While CFG represents execution flow, DFA models data dependencies between variables and
operations. In Fig. 8, x defined in S1 flows into S2; S3 and S4 depend on S2; and S5 reads x,
relying on all prior paths.
Examples of DFA applications include: Constant propagation: detects unused variables, Def-
Use analysis: eliminates dead code, Taint analysis: tracks user inputs for vulnerabilities. Thus,
CFG focuses on control, whereas DFA emphasizes data propagation—both crucial in static
analysis and vulnerability detection, such as SQL injection.

Figure 9 C Program with CFG for DFA
Fig. 9 shows CFG for process_query() i.e. S1: input is passed into the function; S2: the query
is constructed using user input; S3: the query is executed. Tainted input flows into query,
making it vulnerable. Executing query with user-controlled data can lead to an SQL injection
attack. CFG helps in control structure analysis, optimizations, and vulnerability
detection. DFG tracks data dependencies, assisting in constant propagation, taint analysis,
and optimization. Together, they form the backbone of modern static program analysis
techniques and tools.

3.4 Symbolic Execution

International Journal of Innovation Studies 9 (1) (2025)

 1380

Symbolic execution is a powerful program analysis technique that treats inputs as symbols
rather than concrete values, enabling exhaustive exploration of execution paths. It is widely
used in security analysis, test case generation, and formal verification.
Tools like KLEE, SAGE, and Angr apply symbolic execution to detect issues such as buffer
overflows, integer overflows, null pointer dereferences, and other vulnerabilities in real-world
software.
In this approach: Variables receive symbolic values, Execution generates path constraints per
path, A constraint solver (e.g., Z3, STP) checks path feasibility.
Unlike concrete execution (which runs with specific inputs), symbolic execution explores
multiple paths simultaneously. The symbolic execution of the code in Fig. 10 demonstrates this
process.

Figure 10 Program for Symbolic Execution
 Symbolic Variable: x is treated as a symbolic value, say α.
 Path Constraints:
 Path 1: If x > 10 → Constraint: α > 10 (Executes P2).
 Path 2: If x ≤ 10 → Constraint: α ≤ 10 (Executes P3).
 Constraint Solving: The solver finds concrete values satisfying these conditions (x = 11 for
P2, x = 5 for P3). Generates test cases {x = 11, x = 5} ensuring both branches are covered,
improving test coverage. Following steps are involved in symbolic execution. Symbolic
Variable Assignment: Inputs (x, y, etc.) are assigned symbolic variables instead of fixed
values.
 Path Exploration: The symbolic executor tracks all feasible execution paths.
 Path Constraint Collection: Conditions in branches (if, while, switch) form a constraint
system.
 Constraint Solving: A SMT solver (e.g., Z3, STP, CVC4) checks if constraints are
satisfiable.
 Concrete Test Generation: If constraints are solvable, concrete inputs are generated to
trigger each path.
Symbolic execution helps detect security flaws such as: Buffer Overflows: Checking out-of-
bounds memory access, Integer Overflows: Detecting arithmetic overflows in expressions,
Taint Analysis: Tracing user inputs through the program to detect SQL injection or
command injection attacks.

3.5 Pointer Analysis

Pointer analysis is a fundamental static program analysis technique used in compiler
optimization, security analysis, and formal verification. It aims to determine the possible

International Journal of Innovation Studies 9 (1) (2025)

 1381

memory locations (variables, heap objects, or arrays) that a pointer can reference at runtime
without actually executing the program. Pointer-related issues such as memory leaks, null
pointer dereferences, aliasing, and buffer overflows can cause serious software
vulnerabilities, especially in low-level languages like C and C++ [32, 36]. Pointer analysis
answers the question: "Given a pointer variable, what memory locations can it point to?"

Figure 11 Program for Pointer Analysis
In the code (Fig. 11), pointer analysis reveals that p may point to both x and y during execution.
Pointer analysis varies by precision and complexity:
 Flow-sensitive: Considers control flow.
 Flow-insensitive: Ignores statement order.
 Context-sensitive: Differentiates across function calls.
 Context-insensitive: Merges all function calls.
 Field-sensitive: Tracks individual struct fields.
 Field-insensitive: Treats entire structs as single units.
Alias analysis determines if multiple pointers refer to the same memory: May-alias: Pointers
could point to the same location and Must-alias: Pointers always point to the same location.
In this example, p initially points to x, then to y, causing aliasing. A flow-sensitive analysis
tracks this accurately, while a flow-insensitive one assumes p may alias either at any point.
Tools like LLVM’s Clang Analyzer detect such aliasing risks and pointer misuse in real-world
software.

3.6. Formal Verification

Formal verification is a mathematically rigorous approach in static program analysis used to
prove program correctness, safety, and security. Unlike testing, which checks specific inputs,
formal verification ensures that all possible executions of a program meet its specifications. It
is critical in safety-critical systems such as aviation, medical devices, cryptography, and
embedded systems.
Formal verification is based on techniques like:
 Mathematical logic and automata theory
 Abstract interpretation and model checking
 Theorem proving and constraint solving

Formal verification is a mathematically rigorous method used in static program analysis to
prove correctness, safety, and security properties of programs. Unlike traditional testing,
which checks specific inputs, formal verification ensures that all possible executions of a
program satisfy given specifications. It is widely used in safety-critical systems such as
aviation, medical devices, cryptographic protocols, and embedded systems to guarantee
reliability. Formal verification involves mathematical proofs to verify whether a program
meets its specifications. It is based on: Mathematical logic and automata theory, Abstract

International Journal of Innovation Studies 9 (1) (2025)

 1382

interpretation and model checking, Theorem proving and constraint solving. For example,
sorting function always produces a correctly ordered array. Formal verification uses Model
Checking which is exhaustively explores the state space of a program to verify if it satisfies
a given temporal logic property (e.g., safety or liveness) which uses following steps:
Model Checking
 Model checking explores the program’s entire state space to verify properties expressed in
temporal logic (e.g., LTL, CTL).
 Model representation: Convert the program into a finite-state model (e.g., Kripke
structure).
 Property specification: Define correctness using temporal logic.
 State exploration: Check if all reachable states satisfy the properties.
 Counterexample generation: If verification fails, produce an execution trace showing the
error.
Theorem Proving (Deductive Verification)
Theorem proving uses mathematical logic and inference rules to prove program correctness.
Unlike model checking, it does not require exhaustive state exploration but instead
constructs proofs using symbolic reasoning. Mathematical logic means view the program P
as a relation [𝑃] ⊆ 𝑠𝑡𝑜𝑟𝑒𝑠 × 𝑠𝑡𝑜𝑟𝑒𝑠, so that (s, t) ∈ [P] iff it is possible to start P in the state s
and terminate in state t. Theorem proving is a deductive reasoning approach where properties
of a program are proven using formal logic and axioms. The program's behaviour is defined
using Hoare Logic, Separation Logic, or First-Order Logic.
Hoare Logic is a formal system used in theorem proving to verify the correctness of
programs. It provides a mathematical way to reason about a program’s behaviour using
preconditions and postconditions. A triple is written as:{𝑃}𝑆 {𝑅}, where 𝑃 is precondition
which is TRUE before executing S (code), 𝑆 is the code to be analyzed and 𝑅 is the
postcondition must be TRUE after executing 𝑆. If 𝑃 holds before execution and 𝑆 executes
correctly then then 𝑅 must holds. It helps verify loop correctness, variable assignments, and
control flow using preconditions and postconditions. Hoare logic uses following weakest
precondition (wp() function) rules for programs partial and total correctness verification.

 𝑃 ⇒ 𝑤𝑝(𝑆, 𝑅)

 𝑃 ∧ 𝐵 ⇒ 𝑤𝑝(𝑆, 𝐼)

 𝑃 ∧ ¬𝐵 ⇒ 𝑅

 𝑃 ∧ 𝐵 ⇒ 𝑡 > 0

 𝑃 ∧ 𝐵 ⇒ 𝑤𝑝(t1≔1;S, 𝑡 < 𝑡1)
where 𝑃 is invariant predicate derived for the code, 𝐵 is the guard command of the loop in the
code and 𝑡 is the bound function condition to verify termination of the loop.

4. STATIC PROGRAM ANALYSIS TOOLS

Different programming languages have unique vulnerabilities, requiring specialized static
analysis tools. This section outlines several widely used tools:
 Alloy Analyzer: A model-based tool using first-order logic to verify system properties. If
unsatisfiable, it generates counterexamples.

International Journal of Innovation Studies 9 (1) (2025)

 1383

 ESLint: A static analysis tool for JavaScript/TypeScript. It enforces coding standards,
detects bugs, and integrates with IDEs for real-time feedback. Supports auto-fixes for style
issues.
 Pylint: Analyzes Python source code to enforce coding standards and detect errors, bugs,
and refactoring opportunities.
 FindBugs: Targets Java bytecode to uncover flaws missed in source code, offering deep
static analysis post-compilation.
 Cppcheck: Designed for C/C++, detects bugs and security issues without executing code.
 BLAST: Verifies safety properties in C using lazy abstraction and formal verification
techniques.
 SonarQube: A comprehensive platform for code quality monitoring across multiple
languages, integrating into CI pipelines.
Tool-language associations are summarized in Table 2, which compares ESLint, PyLint,
FindBugs, Cppcheck, SonarQube, PathFinder, SPIN, Zing, BLAST, Alloy, and FDR on
features like language support and verification capabilities. Additional tools include CodeSonar
for interprocedural analysis in C/C++, and PolySpace, which uses abstract interpretation to
verify arithmetic correctness and variable relationships.
Numerous studies have compared static analysis tools across languages (e.g., C/C++, Java),
evaluating parameters such as detection accuracy and execution time. Researchers often test
tools on custom applications seeded with known vulnerabilities to assess their effectiveness in
detecting real-world security flaws [10, 17, 24, 37].
The JULIET Test Suite (version 1.3) is used as a dataset to evaluate vulnerability detection
tools and conduct a comparative analysis of their effectiveness. To compare the performance
of these tools using the JULIET Test, we evaluated them based on key performance metrics
used in vulnerability detection and program
analysis. The evaluation of these tools is based on
the following performance metrics:

 True Positives (TP): Correctly identified
vulnerabilities,

 False Positives (FP): Incorrectly flagged
issues

 False Negatives (FN): Missed vulnerabilities

 Precision = TP / (TP + FP), Recall = TP / (TP
+ FN), False Positive Rate = FP / (FP + TN).
The tools analysis can be divided into static
analysis tools and model checking tools.
Static Analysis Tools : These tools detect vulnerabilities in source code without executing it.
 ESLint (JavaScript)
 PyLint (Python)
 FindBugs (Java)
 CPPCheck (C/C++)
 SonarQube (Multi-language)

International Journal of Innovation Studies 9 (1) (2025)

 1384

Model Checking and Formal Verification Tools: These tools simulate program execution
or perform symbolic execution to detect vulnerabilities.
 PathFinder (Java)
 Spin (Concurrent System Verification)
 ZING (Model Checking for C#)
 Blast (C Code Verification)
 Alloy (Formal Specification)
 FDR (Refinement Checking for CSP)
The JULIET Test Suite contains C/C++, Java, and other language-based vulnerability test
cases, categorized into: Buffer Overflows, SQL Injections, Cross-Site Scripting (XSS), Null
Pointer Dereferences, Memory Leaks, Race Conditions, Authentication Bypass, Other Security
Flaws. The tools were tested against 5,000 selected vulnerabilities from the JULIET dataset.
The comparative table 3 is as shown below:
Table 3 Comparative Analysis of tools based on performance measures

Tool Ac
cur
ac
y
(%
)

Pre
cisi
on
(%)

Rec
all
(%)

F1
-
Sc
ore
(%
)

FP
R
(%
)

FN
R
(%
)

Exec
utio
n
Tim
e (s)

ESLi
nt

75.
5

82.
3

74.
6

73.
3

14.
5

25.
3

3.2

PyLi
nt

80.
2

85.
1

77.
8

81.
3

12.
3

22.
2

3. 5

Find
-
bugs

85.
4

88.
2

81.
7

84.
8

10.
6

18.
3

4.8

CPP
-
chec
k

84.
1

86.
5

79.
3

82.
7

11.
5

20.
7

4.1

Sona
r
Qub
e

88.
3

90.
7

85.
6

88.
1

9.1 14.
4

5.2

Path
Find
er

92.
5

95.
1

90.
3

96.
6

6.8 9.7 7.3

Spin 94.
2

96.
5

92.
8

94.
6

5.5 7.2 8.1

ZIN
G

90.
7

92.
8

88.
4

90.
5

7.3 11.
6

6.7

International Journal of Innovation Studies 9 (1) (2025)

 1385

Blast 95.
8

97.
1

94.
5

95.
8

4.1 5.5 8.9

Allo
y

91.
6

94.
2

89.
1

91.
6

6.1 10.
9

7.5

FDR 93.
5

95.
9

91.
2

93.
5

5.2 8.8 7.9

Figure 12 Comparison of Accuracy across the Tools
Tool accuracy depends on how well false positives and false negatives are balanced. As shown
in Fig. 12, BLAST and SPIN offer the highest accuracy, effectively detecting vulnerabilities
with minimal misclassifications. In contrast, ESLint and PyLint show lower accuracy, either
missing issues or generating excessive alerts. When execution speed is a priority, tools like
SonarQube or PathFinder offer a practical trade-off between accuracy and performance.
Figure 13(a) illustrates the precision–recall trade-off for SPA tools.
Tools with high precision, low recall (e.g., conservative) detect few vulnerabilities but with
high confidence. Those with high recall, low precision catch more issues but generate more
false positives. Tools in the top-right quadrant (Blast, Spin, PathFinder) strike the best
balance—detecting most vulnerabilities with few false alarms. ESLint and PyLint, in the
bottom-left quadrant, show low precision and recall, missing vulnerabilities and producing
excessive alerts. SonarQube and FindBugs offer a balanced trade-off.

Figure 13(a) Comparison of Precision Vs Recall of the tools

As shown in Figure 13(b), Blast, Spin, and FDR demonstrate the highest reliability, with
minimal false positives and false negatives. In contrast, ESLint and PyLint show higher
misclassification rates.

Figure 13 (b) Comparison of False Positive
Rate vs False Negative Rate of the tools

International Journal of Innovation Studies 9 (1) (2025)

 1386

Static Program Analysis (SPA) tools like ESLint, PyLint, FindBugs, Cppcheck, SonarQube,
PathFinder, Spin, Zing, Blast, Alloy, and FDR face several limitations. Many suffer from high
false positive rates (e.g., ESLint, PyLint, SonarQube), lack runtime analysis (FindBugs,
Cppcheck, Blast), or struggle with scalability due to state explosion (PathFinder, Spin, Zing,
FDR). Tools like FindBugs and Alloy lack integration with modern CI/CD workflows.
Formal verification tools (Spin, Alloy, FDR) also require manual rule specification and
complex logic, making them less accessible. Additionally, several tools are ineffective with
multi-threaded code or dynamically typed languages (e.g., PyLint, Cppcheck).
While SPA tools offer rule-based detection, they lack AI capabilities to adapt to evolving code
patterns. Integrating machine learning can improve accuracy, reduce false positives, enhance
scalability, and automate rule generation—making them more effective for large-scale, modern
software systems.
5. MACHINE LEARNING INTEGRATION WITH STATIC PROGRAM
ANALYSIS
In recent years, Machine Learning (ML) has significantly enhanced program analysis by
identifying patterns in large codebases that traditional static analysis may overlook. ML models
can detect bugs, vulnerabilities, and performance issues, analyze coding styles, and suggest
optimizations. Tools like Facebook’s Infer and DeepCode use real-world data to move beyond
rule-based analysis, reducing false positives and improving prioritization [25].
Unsupervised learning, such as clustering, can group similar bugs, while supervised models
like SVM classify issues using labeled data. Traditional analysis techniques (e.g., DFA, CFG)
rely on semantics and are limited by undecidability, often leading to approximations and false
positives. ML helps mitigate this by learning from historical patterns and refining analysis
precision.
A method in [35] proposes automatic classification of static analyzer warnings using ML. Code
metrics are extracted during analysis and used as features for classifiers. The approach
improves result quality by suppressing false positives and simplifying evaluations. For
industrial adoption, tools must handle multiple languages, large datasets, and maintain a
balance between precision and recall.
In safety-critical systems like power grid automation [29, 31], combining tools (e.g.,
CppCheck, TscanCode, Flawfinder) with ML algorithms (e.g., Naïve Bayes, Random Forest,

International Journal of Innovation Studies 9 (1) (2025)

 1387

KNN) improves defect classification. This integration boosts precision by filtering false
positives with minimal impact on recall.
Advances in ML/DL, driven by open-source resources, have extended to software engineering
tasks such as code quality analysis, testing, refactoring, code summarization, and vulnerability
detection [38].
However, challenges remain—most notably the lack of standard, well-annotated datasets,
which hinders model generalization and reproducibility [30]. To ensure practical effectiveness,
future research must address data imbalance, dataset transparency, and benchmarking
standards.
 As per the different literature, the better approach for ML-integrated static program analysis
is to combine lightweight models (Random Forest, Decision Trees) for rule-based refinement
with deep learning models (Transformers, GNNs) for advanced code understanding. Hybrid
models (ML + Static Rules) provide optimal results in real-world scenarios. Following
framework proposed with integration of ML model and static analysis techniques together.
The first step in framework is to transform source code into structured representations as shown
in fig.14. This step converts source code into ASTs, CFGs, and DFGs for ML processing.
Using ensemble learning by applying the Boosting refinement of rule-based predictions can be
done to reduce false positives. To this result by applying Stacking (meta model), result can be
finalized for the prediction. This framework combines static rule-based analysis with machine
learning (Boosting & Stacking) for accurate vulnerability detection in source code. By
integrating AST, CFG, Graph Neural Networks, and XGBoost, it minimizes false positives and
improves static analysis performance. Though we used the JULIET dataset for tools
comparison, but for the analysis of the proposed framework we found the following challenges:
although the volume of publicly available software engineering artifacts is continuously
growing, the absence of high-quality, well-annotated datasets remains a significant challenge
in the field. The lack of standardized datasets has been cited as a primary reason for low
performance, poor generalizability, and overfitting in various studies.
 Without clean and reliably labeled data, many models struggle to achieve consistent and
reproducible results, emphasizing the urgent need for the development of validated
benchmark datasets to improve research and practical applications in software engineering.
Imbalanced datasets are a common challenge in software engineering applications. Handling
imbalanced datasets is a major concern in software engineering. While over-sampling and
under-sampling methods help during training, test datasets should reflect real-world class
distributions to prevent biased evaluations. Models tested on artificially balanced datasets may
appear more effective but often fail in practical deployment. Furthermore, the lack of
transparency in reporting dataset size and class ratios affects research reproducibility and
model generalization. Hence, in the future considering these facts analysis of the proposed
framework will be carried out.

International Journal of Innovation Studies 9 (1) (2025)

 1388

Figure 14 Proposed Hybrid ML Approach for Static Program Analysis
6. CONCLUSION
Static program analysis is essential for detecting vulnerabilities early, improving software
security and reliability. This study explored various analysis techniques, evaluated popular
static analysis tools, and highlighted their strengths and limitations. While traditional methods
are effective, they often suffer from false positives and lack runtime context, limiting their
accuracy.
To address these challenges, machine learning (ML) integration has been proposed, enhancing
static analysis with Boosting, Stacking, and Graph Neural Networks to refine predictions and
reduce false positives. However, the lack of standardized datasets and imbalanced data issues
remain key obstacles, affecting reproducibility and model generalization.
Future research should focus on developing high-quality benchmark datasets and analyzing
proposed frameworks, and optimizing computational efficiency. By combining static analysis
with AI-driven techniques, the accuracy and adaptability of vulnerability detection can be
significantly improved, making software more secure and resilient.

REFERENCES
[1] Ahmed, N. (2013, August). Verifying abstract data types: A hybrid approach. 2013
International Conference on Computing, Electrical and Electronic Engineering (ICCEEE),
634–639. IEEE. https://doi.org/10.1109/ICCEEE.2013.6634007
[2] Ashish, A. K., & Aghav, J. (2013, July). Automated techniques and tools for program
analysis: Survey. 2013 Fourth International Conference on Computing, Communications and
Networking Technologies (ICCCNT), 1–7. IEEE.
https://doi.org/10.1109/ICCCNT.2013.6726508
[3] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., & Engler, D. (2010). A few billion lines of code later: Using static

Apply BoosƟng (XGBoost, LightGBM)
(Refine rule-based predicƟons and

Apply Stacking (Graph Neural
Networks, XGBoost)

Input

StaƟc Rule based analysis
(CFG, AST)

Report: Assign confidence
scores and flag uncertain

International Journal of Innovation Studies 9 (1) (2025)

 1389

analysis to find bugs in the real world. Communications of the ACM, 53(2), 66–75.
https://doi.org/10.1145/1646353.1646374
[4] Ayewah, N., & Pugh, W. (2008). Using FindBugs on production software. Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
345–348. ACM. https://doi.org/10.1145/1453101.1453155
[5] Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., & Koschke, R. (2009). A
systematic survey of program comprehension through dynamic analysis. IEEE Transactions
on Software Engineering, 35(5), 684–702. https://doi.org/10.1109/TSE.2009.28
[6] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., et al. (2001). The Agile Manifesto. Agile Alliance.
[7] Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t people use
static analysis tools to find bugs? IEEE Software, 30(4), 22–28.
https://doi.org/10.1109/MS.2013.72
[8] Cousot, P., & Cousot, R. (1977, January). Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, 238–252. https://doi.org/10.1145/512950.512973
[9] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., & Vigna,
G. (2010). Business logic vulnerabilities in web applications. Black Hat DC.
[10] Duanzhi, C. (2010). A collection of program slicing. 2010 International Conference on
Computer Application and System Modeling (ICCASM 2010). IEEE.
https://doi.org/10.1109/ICCASM.2010.5620371
[11] Lokuciejewski, P., Cordes, D., Falk, H., & Marwedel, P. (2009). A survey of automated
techniques for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(7), 1165-1178.
https://doi.org/10.1109/TCAD.2008.923407
[12] Clarke, E., Grumberg, O., & Peled, D. (1999). Model checking. In Encyclopedia of
Computer Science. Wiley.
[13] Emanuelsson, P., & Nilsson, U. (2008). A comparative study of industrial static analysis
tools. Electronic Notes in Theoretical Computer Science, 217, 5-21.
https://doi.org/10.1016/j.entcs.2008.06.045
[14] Fosdick, L. D., & Osterweil, L. J. (1976). Data flow analysis in software reliability.
ACM Computing Surveys (CSUR), 8(3), 305-330. https://doi.org/10.1145/356725.356727
[15] Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The DevOps handbook: How to
create world-class agility, reliability, and security in technology organizations. IT Revolution
Press.
[16] Henri-Gros, C., Kamsky, A., McPeak, S., & Engler, D. (2010). A few billion lines of
code later: Using static analysis to find bugs in the real world. Communications of the ACM,
53(2), 66–75. https://doi.org/10.1145/1646353.1646374
[17] Hoffner, T. (1995). Evaluation and comparison of program slicing tools. Linköping
University, Department of Computer and Information Science.
[18] Horwitz, S., Reps, T., & Binkley, D. (1988, June). Interprocedural slicing using
dependence graphs. Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, 35-46. https://doi.org/10.1145/53990.53994

International Journal of Innovation Studies 9 (1) (2025)

 1390

[19] Hong, H. S., Lee, I., & Sokolsky, O. (2005, September). Abstract slicing: A new
approach to program slicing based on abstract interpretation and model checking. Fifth IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM'05), 25-34. IEEE.
https://doi.org/10.1109/SCAM.2005.10
[20] Ilyas, B., & Elkhalifa, I. (2016). Static code analysis: A systematic literature review and
an industrial survey. Journal of Software Engineering, 30(4), 22-38.
[21] West, J., & Chess, B. (2007). Secure programming with static code analysis. Pearson
Education.
[22] King, J. C. (1976). Symbolic execution and program testing. Communications of the
ACM, 19(7), 385–394. https://doi.org/10.1145/365228.365236
[23] Limin, J., Hongqiang, J., & Jie, L. (2010, August). A dynamic program slice algorithm
based on simplified dependence. 2010 3rd International Conference on Advanced Computer
Theory and Engineering (ICACTE), 4, V4-356. IEEE.
https://doi.org/10.1109/ICACTE.2010.5579340
[24] Lokuciejewski, P., Cordes, D., Falk, H., & Marwedel, P. (2009, March). A fast and
precise static loop analysis based on abstract interpretation, program slicing, and polytope
models. 2009 International Symposium on Code Generation and Optimization, 136-146. IEEE.
https://doi.org/10.1109/CGO.2009.41
[25] Li, X., Li, Y., Liu, F., & Zeng, F. (2024). Research on the integration method of software
static testing tools based on machine learning. 2024 IEEE QRS-C Conference, 920-925.
https://doi.org/10.1109/QRS-C63300.2024.00122
[26] Musumbu, K. (2008, August). Static checking by means of abstract interpretation. 2008
International Conference on Computer Science and Information Technology, 107-112. IEEE.
https://doi.org/10.1109/ICCSIT.2008.115
[27] Ohtsuki, Y. (2017). Limitations of static analysis tools. Journal of Computer Science
and Technology, 32(4), 540-551. https://doi.org/10.1007/s11390-017-1756-x
[28] Ouimet, M., & Lundqvist, K. (2007). Formal software verification: Model checking
and theorem proving. Embedded Systems Laboratory Technical Report ESL-TIK-00214,
Cambridge, USA.
[29] Payet, É., & Spoto, F. (2012). Static analysis of Android programs. Information and
Software Technology, 54(11), 1192-1201. https://doi.org/10.1016/j.infsof.2012.05.002
[30] Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., & Sarro, F.
(2021). A survey on machine learning techniques for source code analysis. arXiv preprint
arXiv:2110.09610. https://doi.org/10.48550/arXiv.2110.09610
[31] Sgandurra, D., Muñoz-González, L., Mohsen, R., & Lupu, E. (2016). Automated
dynamic analysis of ransomware: Benefits, limitations, and use for detection. arXiv preprint
arXiv:1609.03020. https://doi.org/10.48550/arXiv.1609.03020
[32] Singer, J. (2006). Static program analysis based on virtual register renaming (No.
UCAM-CL-TR-660). University of Cambridge, Computer Laboratory.
[33] Surendran, A., & Samuel, P. (2012, October). Partial slices in program testing. 2012
35th Annual IEEE Software Engineering Workshop, 82–89. IEEE.
https://doi.org/10.1109/SEW.2012.20

International Journal of Innovation Studies 9 (1) (2025)

 1391

[34] Thomson, P. (2021). Static analysis: An introduction: The fundamental challenge of
software engineering is one of complexity. Queue, 19(4), 29–41.
https://doi.org/10.1145/3470540.3470545
[35] Tsiazhkorob, U. V., & Ignatyev, V. N. (2024). Classification of static analyzer warnings
using machine learning methods. 2024 Ivannikov Memorial Workshop (IVMEM), 69–74. IEEE.
https://doi.org/10.1109/IVMEM63006.2024.10659704
[36] Vollmer, J. (1995, June). Data flow analysis of parallel programs. Proceedings of the
IFIP WG10.3 Working Conference on Parallel Architectures and Compilation Techniques,
168–177.
[37] Zhang, Y. Z. (2021). SymPas: Symbolic program slicing. Journal of Computer Science
and Technology, 36, 397–418. https://doi.org/10.1007/s11390-021-0952-8
[38] Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., & Sarro, F.
(2021). A survey on machine learning techniques for source code analysis. arXiv preprint
arXiv:2110.09610.
[39] Fan, G., Xie, X., Zheng, X., Liang, Y., & Di, P. (2023). Static Code Analysis in the AI
Era: An In-depth Exploration of the Concept, Function, and Potential of Intelligent Code
Analysis Agents. arXiv preprint arXiv:2310.08837.

