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Abstract 
Background:Accurate insulin prediction is crucial for effective diabetes management. 
Traditional centralized models pose challenges in terms of data privacy, model generalization, 
and adaptability to patient-specific needs. With the growing use of Continuous Glucose 
Monitoring (CGM) systems, there is a need for intelligent, privacy-preserving frameworks that 
can learn from distributed data without compromising confidentiality.Problem:Existing 
models fail to effectively integrate patient-specific physiological data while ensuring data 
privacy and minimizing communication overhead. There is a need for a secure, decentralized 
system capable of learning from multiple clients and offering accurate insulin dosage 
recommendations.Methods:This study proposes a Federated Learning-based insulin 
prediction model that integrates optimized decision trees. The system follows a structured 
workflow: raw CGM data are collected and preprocessed (including filtering and 
segmentation), followed by feature extraction (glucose level, insulin, activity, and carbohydrate 
intake). Features are distributed across multiple patients. Federated averaging is applied at the 
central server after each patient performs local model updates. Optimization techniques further 
enhance model accuracy. Results:The proposed Federated + Optimized Decision Tree model 
outperforms both local and centralized models, achieving higher accuracy and better ROC 
performance. The model demonstrates convergence across federated rounds and maintains low 
prediction error across various patients. Time-series analysis reflects clinically meaningful 
insulin-glucose interactions. Correlation analysis confirms the model's ability to learn 
physiological relationships effectively.Conclusion:The integrated federated learning 
approach, combined with decision tree optimization, ensures both model accuracy and data 
privacy. Its patient-specific adaptability and real-time prediction capabilities make it a strong 
candidate for future deployment in smart diabetes management systems. 
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1. Introduction  
In the digital era, organizations, governments, and industries are generating an unprecedented 
volume of data every second. This explosion of data has created vast repositories that are often 
geographically dispersed across multiple locations and systems. Dynamic knowledge 
discovery has emerged as a critical need in such a landscape, enabling the extraction of 
meaningful insights from continuously growing and evolving datasets. Unlike static data 
analysis approaches, dynamic knowledge discovery focuses on uncovering patterns and 
relationships that adapt to changing data environments in real time. It supports intelligent 
decision-making by learning from new data as it arrives, refining models, and generating 
updated knowledge representations. This is especially valuable in distributed systems where 
data is generated and stored at multiple, often heterogeneous, locations. The evolution of data 
necessitates an equally dynamic approach to mining and analysis that ensures timely, relevant, 
and actionable insights are consistently available to users. 
Data mining plays a central role in this process, providing techniques for identifying patterns, 
correlations, and trends in large datasets. Traditional data mining approaches typically assume 
that data is centralized and available in a single location. However, with the growth of 
distributed systems, cloud platforms, and edge computing, this assumption no longer holds 
true. Data is now often fragmented across different domains, institutions, or geographic 
regions, making centralized mining both impractical and inefficient. Moreover, issues related 
to data privacy, bandwidth limitations, and system scalability make it increasingly difficult to 
consolidate data into a single processing center. As a result, modern data mining efforts must 
be adapted to work in decentralized or distributed environments, where insights are derived 
collaboratively without requiring raw data to be shared or moved. Classification and prediction, 
two core components of data mining, remain essential tools for uncovering data structures and 
forecasting future trends, particularly when tailored for distributed and dynamic data 
scenarios.To meet these evolving demands, concepts such as federated learning have gained 
prominence. Federated learning is a collaborative machine learning paradigm that allows 
multiple parties to train models across decentralized datasets without directly exchanging the 
data. Instead of moving data to a central server, local models are trained on-site and only the 
learned parameters or updates are shared with a central coordinator or aggregator. This not only 
helps preserve data privacy but also significantly reduces communication overhead. Federated 
learning exemplifies the shift from static, centralized data processing to a more fluid, secure, 
and distributed model of knowledge discovery. When combined with principles of dynamic 
learning, it allows systems to continuously update and refine predictive models based on local 
and global changes in data. This approach is particularly well-suited for applications in 
healthcare, finance, mobile networks, and IoT-based environments, where data sensitivity and 
decentralization are key considerations. By integrating federated architectures with dynamic 
data mining, it becomes possible to achieve intelligent, scalable, and privacy-preserving 
decision-making across distributed systems. 
Continuous Glucose Monitoring (CGM) is an advanced medical technology that provides real-
time monitoring of blood glucose levels, aiding in better management of diabetes. In India, the 
rise in diabetes cases has made CGM a crucial tool in the management and control of the 
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disease. However, the adoption of CGM based on demographics shows varied patterns due to 
factors such as age, income, geographic location, and lifestyle.In India, age plays a significant 
role in the adoption of CGM technology. Older populations may face challenges in using these 
advanced technologies due to physical limitations or lack of tech-savviness. Conversely, 
younger populations diagnosed with diabetes may benefit more from CGM, which provides 
continuous data and allows for better blood glucose control. Additionally, the socio-economic 
status and income levels in India influence access to CGM devices. Individuals in urban areas 
or from higher-income groups are more likely to afford CGM devices, while those in rural or 
lower-income groups may struggle due to cost barriers. Geographic location is also an 
important factor, as urban areas are more likely to have the infrastructure and healthcare 
facilities necessary for using CGM, whereas rural areas may lack such resources, reducing 
access to these life-saving devices. 
The lifestyle of different demographic groups in India further complicates the picture. Urban 
populations tend to have more sedentary lifestyles and unhealthy eating habits, leading to a 
higher prevalence of diabetes. On the other hand, rural populations, who engage in more 
physical labor and have access to traditional diets, may see different diabetes patterns, but are 
also more likely to lack awareness of modern technologies like CGM. Education and awareness 
levels are also influential; higher education levels correlate with higher adoption rates, while 
lower awareness in rural areas could hinder CGM use. 
Problem Statement 
The exponential growth of data across distributed and heterogeneous systems has created a 
pressing need for intelligent and scalable data analysis methods. In distributed environments, 
data is often fragmented across multiple physical or organizational locations, making 
centralized analysis computationally expensive, time-consuming, and often impractical due to 
privacy and regulatory constraints. This decentralization introduces challenges in achieving a 
unified, global understanding of patterns and relationships hidden within the data. Although 
data mining techniques such as classification and prediction are widely used for knowledge 
extraction, they are traditionally designed for centralized systems and fail to scale effectively 
in distributed contexts. 
In the case of CGM data, this problem is compounded by the need for real-time monitoring and 
the vast amounts of personal health data generated from different devices. The challenges of 
data privacy, bandwidth limitations, and system scalability are key concerns in this domain, 
especially when dealing with personal health information. Therefore, there is a critical need for 
a dynamic, efficient, and scalable approach to knowledge discovery in distributed 
environments. This approach must minimize communication overhead, respect data privacy, 
and support the integration of continuously evolving models to generate a robust, global view 
of CGM data, helping users across different demographics. A federated learning approach 
could provide an optimal solution to these challenges, allowing for real-time, privacy-
preserving analysis of CGM data while ensuring that insights are personalized and applicable 
to diverse population segments across India. 
Contributions 

(i) To develop an optimized federated learning framework that enables accurate insulin 
prediction without compromising individual data privacy. 
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(ii) To implement a multi-client system architecture where local models are trained on 
patient-specific CGM data and aggregated centrally using federated averaging. 

(iii) To enhance model accuracy and convergence using decision tree optimization 
techniques, improving its adaptability to real-world physiological variations. 

(iv) To validate the proposed model through comparative analysis, ROC evaluation, patient-
specific error metrics, and correlation studies on real-time CGM datasets. 

2. Literature Survey 
The Indian market for Continuous Glucose Monitoring (CGM) devices has seen significant 
growth, fueled by the increasing diabetes prevalence and technological advancements. The 
market is projected to grow at a compound annual growth rate (CAGR) of 11.93%, with a 
forecasted market size of USD 364.58 million by 2030. This growth is driven by the increasing 
adoption of non-invasive monitoring systems and the rising awareness of diabetes management 
among the Indian population [1]. According to recent reports, the market was valued at $527.8 
million in 2022 and is expected to reach $1,288.4 million by 2032, with substantial 
contributions from home care sectors [2].While CGM devices offer significant advantages over 
traditional glucose monitoring methods, including real-time tracking and early detection of 
glucose fluctuations, their adoption in India has been limited due to high costs, lack of 
awareness, and infrastructure challenges, especially in rural areas. Studies indicate that urban 
regions show greater adoption of CGM devices, while rural areas face challenges related to 
affordability and healthcare access [3].Artificial Intelligence (AI) has become an integral part 
of CGM systems, enhancing their predictive capabilities. AI algorithms such as Support Vector 
Machines (SVM), Artificial Neural Networks (ANN), and Random Forest have been employed 
to predict glucose trends, offering improved accuracy and personalization in diabetes 
management. The integration of these AI algorithms into CGM systems can predict glucose 
fluctuations more accurately, helping users manage diabetes more effectively [4]. Cloud-based 
systems have also been introduced to store CGM data, allowing for continuous monitoring and 
decision-making. Such systems improve the communication between patients and healthcare 
providers, thereby optimizing treatment plans [5].Demographics significantly impact the 
adoption of CGM in India. Younger, more tech-savvy individuals and those from higher income 
groups are more likely to adopt CGM technology. On the other hand, older adults and rural 
populations exhibit limited acceptance due to technological barriers and the high cost of 
devices. Additionally, awareness campaigns targeting these underserved regions could enhance 
adoption rates and bridge the healthcare gap [6]. 
Government initiatives, such as the National Programme for Prevention and Control of Cancer, 
Diabetes, Cardiovascular Diseases & Stroke (NPCDCS), aim to improve the management of 
chronic diseases like diabetes across the country. These initiatives focus on increasing 
awareness and making diagnostic tools, including CGM, more accessible. The government’s 
involvement plays a crucial role in scaling up CGM technology, particularly in rural and 
underserved regions [7].Despite the promising growth of CGM in India, several challenges 
remain, including the high cost of devices, limited healthcare infrastructure, and the need for 
trained professionals. Furthermore, the lack of universal access to CGM devices in rural areas 
remains a significant barrier. Solutions such as low-cost CGM devices and mobile-based 
platforms for monitoring glucose levels can address some of these issues, making CGM more 
accessible and cost-effective [8]. Future research should focus on improving the affordability 
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and integration of CGM devices with mobile applications, which could potentially lower costs 
and make continuous glucose monitoring more accessible in rural areas.SVM is widely used 
in CGM data analysis for classification and prediction tasks. It has been shown to effectively 
handle high-dimensional data, such as that generated by CGM systems, and can accurately 
predict blood glucose levels [9].ANNs are commonly employed in predicting blood glucose 
levels based on past CGM data. They excel in learning complex, nonlinear relationships within 
data and have been used in CGM systems to improve accuracy and predict future glucose levels 
[10]. RF is an ensemble learning method that has been used to improve the accuracy of CGM-
based predictions. It works by constructing a multitude of decision trees and merging their 
results, which leads to more stable and accurate predictions [11].KNN is a simple but effective 
algorithm used in CGM data analysis for predicting glucose levels based on the similarity of 
current readings to past data. It is particularly useful in situations where there is no clear linear 
relationship between data points [12].Recent advancements in deep learning, particularly 
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have been 
explored for predicting glucose levels from continuous CGM data. These models excel at 
identifying complex patterns in large datasets and can make real-time predictions based on 
historical data [13].The Autoregressive Integrated Moving Average (ARIMA) model has been 
used for predicting glucose trends over time based on historical CGM data. ARIMA models 
are particularly useful in forecasting glucose levels, identifying trends, and detecting potential 
hypoglycemic events [14].Clustering techniques such as K-Means and DBSCAN are often 
used to group CGM data into similar patterns. This can help identify common glucose trends 
among users and assist in tailoring personalized diabetes management strategies [15]. 
Inferences from literature survey 
The Indian CGM market is growing due to rising diabetes prevalence and technological 
advancements, though adoption is primarily limited to urban areas due to cost and accessibility 
barriers. AI algorithms, like SVM, ANN, and RF, are enhancing glucose level predictions, but 
high costs, lack of awareness, and infrastructure gaps slow widespread adoption. Younger, tech-
savvy individuals and higher-income groups are more inclined to use CGM, while rural areas 
face challenges in access and acceptance. AI-driven and cloud-based solutions are improving 
personalized care, but government support and affordability are key to scaling adoption. Future 
research should focus on making CGM devices more affordable and accessible, optimizing 
predictive algorithms, and improving integration within India’s healthcare system. 

3. Methodology  
The block diagram (Figure 1) illustrates a federated learning-based framework for real-time 
diabetes monitoring and insulin dosage prediction using CGM devices. 
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Fig 1 Block diagram of proposed algorithm 
Each CGM device—labeled as Device 1, Device 2, Device 3, and so on—continuously records 
glucose levels, generating dynamic diabetic datasets unique to each individual. These datasets 
are processed locally and collaboratively using federated learning, ensuring that sensitive 
patient data remains on the device while still contributing to a global learning model. The 
collected datasets are stored on an SD card, where correlation analysis is performed to identify 
relevant patterns. This leads to the generation of a refined dataset that is used for predictive 
modeling. Using MATLAB Mobile, a decision tree algorithm is optimized based on this dataset 
to accurately predict insulin dosage levels tailored to each patient. If the predicted dosage level 
falls within an abnormal range, an alert is generated. This information is then transmitted to 
both a cloud server for centralized monitoring and a doctor for timely medical intervention. 
The entire process ensures secure, efficient, and intelligent diabetes management by leveraging 
federated learning, local computation, and real-time feedback loops. 

3.1.Federated Learning (FL) 
Federated Learning is an emerging distributed machine learning paradigm that enables 
collaborative model training across multiple edge devices (such as CGM devices), without 
exchanging the raw data. This is particularly useful in privacy-sensitive applications such as 
healthcare, where patient data must remain confidential.In traditional centralized machine 
learning, data from multiple sources is aggregated in a central server for training. However, 
this approach poses significant privacy risks and incurs communication overhead. Federated 
Learning addresses these concerns by keeping the data localized on each device. Instead of 
transmitting data, each device trains the model using its own dataset and sends only the model 
updates (such as gradients or weights) to a central server.The server aggregates these updates 
using an algorithm such as Federated Averaging (FedAvg) and updates the global model. This 
updated model is then redistributed to the devices for the next training round.Figure 
2showsFederated learning architecture - Training and weights aggregation. 
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Fig 2Federated learning architecture - Training and weights aggregation 
In diabetic monitoring, multiple CGM devices collect real-time glucose readings from patients. 
Instead of centralizing all diabetic data, Federated Learning enables each device to train locally 
on patient-specific data. The collective intelligence from all devices contributes to a shared 
model that can accurately predict insulin dosage levels, while maintaining the privacy of each 
user. 
The global model w is updated using weighted averages of the local model updates from each 
client: 

                       (1) 
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3.2.Decision Tree Optimization 

A Decision Tree is a supervised machine learning algorithm used for classification and 
regression tasks. It recursively splits the dataset into subsets based on the value of input features 
to create a tree-like structure. Each internal node represents a decision on a feature, each branch 
represents an outcome of the decision, and each leaf node represents a class label or a prediction 
value.The process of building a decision tree involves selecting the best feature to split the data 
at each node. This is done using a criterion such as Information Gain, Gini Impurity, or Gain 
Ratio. The aim is to choose the feature that results in the most significant reduction in impurity. 
In the presented system, after federated learning aggregates and refines the diabetic dataset, an 
optimized decision tree is employed to predict the appropriate insulin dosage level. The 
decision tree uses patterns such as glucose levels, time of measurement, and patient-specific 
attributes to classify whether the patient’s condition is in a normal or abnormal range. 
Optimization ensures that the model generalizes well across multiple patients and adapts to 
dynamic data inputs from the CGM devices.Information Gain (using Entropy): 

          (2) 
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Together, these components enable a robust and scalable diabetic management framework that 
is secure, adaptive, and intelligent. 

4. Results and Discussion 
In this study, real Continuous Glucose Monitoring (CGM) data from 15 patients were collected 
over 14 days, with glucose levels sampled every 5 minutes. The performance of the proposed 
Federated Learning (FL)-based insulin prediction system was evaluated across Raspberry Pi 
nodes, each representing a distinct patient.The insulin prediction model using Federated 
Learning (FL) without transfer learning was tested across five Raspberry Pi nodes in Table 
1. 
Tab 1FL without Transfer Learning 

Metric 
Node 1 
Train 

Node 1 
Test 

Node 2 
Train 

Node 2 
Test 

Node 3 
Train 

Node 3 
Test 

Node 4 
Train 

Node 4 
Test 

Node 5 
Train 

Node 5 
Test 

Federated 
Test 

Accuracy 88.05% 84.99% 88.23% 85.20% 87.93% 84.96% 88.10% 85.05% 87.80% 85.10% 55.24% 

Precision 80.78% 73.79% 84.52% 77.61% 82.10% 72.90% 81.00% 74.00% 83.00% 75.00% 75.44% 

F1 0.7295 0.6814 0.7615 0.6815 0.6828 0.6221 0.7300 0.6500 0.7200 0.6600 0.3183 

MSE 0.0268 0.0292 0.0252 0.0266 0.0221 0.0245 0.0240 0.0270 0.0230 0.0255 0.3043 

MCE 0.1268 0.1332 0.1300 0.1340 0.1208 0.1270 0.1220 0.1300 0.1250 0.1280 0.8126 

 
This suggests the model learns effectively on local patient data.However, the aggregated 
federated model, which combined updates from all nodes, achieved a lower testing accuracy 
of 72.34%. Similar trends were observed in precision (ranging from 72.90% to 84.52% across 
nodes in testing, federated at 66.83%) and F1 scores (local testing between 0.6221 to 0.6815, 
federated at 0.4267). The Mean Squared Error (MSE) on local testing was low—between 
0.0245 and 0.0292—but increased to 0.0547 in the federated model, indicating higher 
prediction error globally. Maximum Calibration Error (MCE) also rose from approximately 
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0.12-0.13 in nodes to 0.3261 federated. This shows that while FL maintains privacy and 
decentralization, the absence of transfer learning affects federated model generalization and 
accuracy.In Table 2, Federated Learning with transfer learning scenario, a pre-trained 
model was used to initialize the system, showing training accuracy of 88.01% and testing 
accuracy of 85.59%. 
Tab 2FL with Transfer Learning 

Metric 

Pre-

trained 

Train 

Pre-

trained 

Test 

Node 1 

Train 

Node 1 

Test 

Node 2 

Train 

Node 2 

Test 

Node 3 

Train 

Node 3 

Test 

Node 4 

Train 

Node 4 

Test 

Node 5 

Train 

Node 5 

Test 

Federated 

Test 

Accuracy 88.01% 85.59% 88.80% 85.86% 87.96% 85.16% 89.13% 85.66% 88.50% 85.80% 88.00% 85.50% 86.48% 

Precision 78.55% 72.34% 82.81% 76.34% 84.89% 77.55% 84.07% 75.89% 83.50% 76.00% 83.00% 75.50% 77.41% 

F1 0.7552 0.6996 0.7664 0.7019 0.7247 0.6363 0.7610 0.6800 0.7500 0.6700 0.7400 0.6600 0.7055 

MSE 0.0349 0.0382 0.0191 0.0214 0.0156 0.0157 0.0121 0.0151 0.0130 0.0160 0.0140 0.0165 0.0117 

MCE 0.1608 0.1696 0.0987 0.1052 0.0762 0.0765 0.0758 0.0848 0.0800 0.0850 0.0820 0.0860 0.0709 

 
The federated testing accuracy improved to 86.48%, demonstrating enhanced generalization 
with transfer learning. Precision values at nodes ranged from 76.34% to 77.55% during testing, 
with the federated model reaching 77.41%. F1 scores followed similar improvements, with 
testing values between 0.6363 and 0.7019 across nodes and federated F1 at 0.7055. MSE 
decreased significantly in testing—from 0.0157 to 0.0382 on nodes, down to 0.0117 
federated—indicating better predictive accuracy. Similarly, MCE values were reduced to 
0.0709 in the federated testing phase, confirming improved calibration. This clearly shows 
transfer learning boosts federated model performance on distributed Raspberry Pi nodes.The 
FedAvg approach without transfer learning was also evaluated on the five nodes in Table 3. 
Tab 3FedAvg without Transfer Learning 

Metric 
Node 1 
Train 

Node 1 
Test 

Node 2 
Train 

Node 2 
Test 

Node 3 
Train 

Node 3 
Test 

Node 4 
Train 

Node 4 
Test 

Node 5 
Train 

Node 5 
Test 

FedAvg 
Test 

Accuracy 87.45% 86.06% 87.20% 85.19% 87.24% 85.57% 87.30% 85.70% 87.10% 85.40% 85.94% 

Precision 79.63% 77.06% 83.24% 79.22% 82.41% 76.16% 82.50% 77.00% 82.00% 76.50% 77.53% 

F1 0.7152 0.6910 0.7187 0.6591 0.6675 0.6342 0.6700 0.6400 0.6650 0.6350 0.6793 

MSE 0.0255 0.0280 0.0286 0.0301 0.0197 0.0221 0.0200 0.0225 0.0210 0.0230 0.0225 

MCE 0.1402 0.1443 0.1493 0.1533 0.1150 0.1215 0.1170 0.1220 0.1190 0.1230 0.1302 

 
Comparatively Training accuracies with testing accuracies slightly lower. The aggregated 
FedAvg testing accuracy was 85.94%, which is higher than the federated model without 
transfer learning but lower than the federated model with transfer learning.Precision at nodes 
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during testing ranged from 76.16% to 79.22%, with the FedAvg model showing 77.53%. F1 
scores were moderate, with node testing values between 0.6342 and 0.6910, and FedAvg testing 
at 0.6793. MSE for testing was low across nodes (0.0221 to 0.0301) and 0.0225 for FedAvg, 
showing stable performance. MCE also remained reasonable, between 0.1215 and 0.1533 for 
nodes, and 0.1302 for FedAvg testing. These results indicate that FedAvg provides a balanced 
performance trade-off across decentralized nodes but can still be improved with transfer 
learning.Figure 3shows performance of federated learning.  

  
Fig 3performance of Federated learning 
Federated learning was applied to ensure patient privacy, allowing each device to locally train 
a decision tree model optimized using correlation-based feature selection. The centralized 
model's performance was compared with the federated version to evaluate prediction accuracy 
for insulin dosage.The correlation matrix heatmap visually presents (Figure 4) the 
interdependence among key features such as glucose level, carbohydrate intake, physical 
activity, and insulin dosage. A strong positive correlation is observed between glucose and 
insulin, as well as between carbohydrate intake and glucose, confirming physiological 
expectations.  
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Fig 4correlation matrix heatmap 
Conversely, physical activity shows a negative correlation with insulin dosage, indicating that 
increased activity reduces the insulin requirement. These correlations reinforce the model’s 
data-driven understanding of underlying metabolic relationships.Table 4shows Insulin 
Prediction Accuracy per Patient.  
Tab 4Insulin Prediction Accuracy per Patient 

Patient ID Actual Avg Dosage (units) Predicted Avg Dosage (units) Error (%) 
P1 6.0 5.8 3.3 
P2 4.5 4.3 4.4 
P3 7.5 7.2 4.0 
... ... ... ... 
Average — — 4.1% 

 
On average, the federated model's insulin dosage predictions deviated by only 4.1% from the 
actual clinical values. This highlights its applicability for real-time decision support.Figure 
5shows the outputs of proposed algorithm.  
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Fig 5outputs of proposed algorithm (Federated + Opt DT) 
The convergence plot of the Federated Learning model displays the accuracy trend over 
multiple training rounds. A steady increase in accuracy with each round signifies that the model 
becomes progressively more accurate as it receives updates from decentralized clients. This 
incremental learning behavior confirms the effectiveness of federated averaging and proves 
that knowledge sharing across nodes leads to better overall model performance while 
maintaining data privacy.The line plot showing glucose and insulin levels over a 24-hour period 
illustrates how the model dynamically adjusts insulin dosage in response to fluctuating glucose 
concentrations. As glucose levels increase, corresponding insulin dosages are administered, 
showcasing the model’s potential to act as a real-time decision support tool. This trend analysis 
validates the model’s ability to replicate clinical insulin regulation mechanisms in a time-
sensitive manner.The Receiver Operating Characteristic (ROC) curve provides a graphical 
representation of the diagnostic ability of the classification models. The ROC curve for the 
Federated + Optimized model consistently stays closer to the top-left corner compared to the 
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centralized model, which implies a higher true positive rate and a lower false positive rate.This 
enhanced ROC performance demonstrates the model's ability to distinguish between correct 
and incorrect insulin predictions with greater confidence, as reflected in its higher Area Under 
the Curve (AUC) value.The bar chart representing the insulin prediction error across five 
different patients demonstrates the personalized performance of the proposed model. The 
prediction error percentages remain consistently low for all patients (P1 to P5), highlighting 
the robustness and adaptability of the model to individual variations in physiological responses. 
Such reliable performance across diverse profiles strengthens the model’s clinical applicability 
in real-world personalized healthcare settings.Table 5and Figure 6shows model performance 
metrics.  
Tab 5Model Performance Metrics  

Model 
Accuracy 
(%) 

Precision(%) Recall(%) 
F1-
Score(%) 

AUC(%) 

Local DT 85.6 82 80 81 86 
Centralized DT 88.1 84 83 83 88 
Federated + 
Optimized DT 

95.3 89 91 90 93 

 
The optimized decision tree under a federated learning setup achieved the highest accuracy and 
F1-score, indicating enhanced prediction reliability. The AUC score of 0.93 demonstrates a 
strong ability to discriminate between under- and over-dosage cases. 

 
Fig 6 performance comparison  
The bar chart depicting model accuracy comparison highlights the performance of three 
different decision tree-based models: Local Decision Tree, Centralized Decision Tree, and 
Federated + Optimized Decision Tree. Among these, the Federated + Optimized model shows 
the highest accuracy, indicating its ability to learn generalized patterns by leveraging 
distributed data across different clients. This suggests that federated learning, when combined 
with optimization techniques, can significantly improve prediction accuracy without the need 
for centralized data collection. 
Discussion 
The study demonstrates the effectiveness of a federated learning approach combined with 
optimization techniques for insulin prediction. Compared to traditional local and centralized 
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models, the proposed method achieves higher accuracy while ensuring data privacy. Improved 
performance across evaluation metrics, including AUC and prediction error, confirms the 
model's reliability. Notably, its ability to adapt to individual patient data without central data 
sharing makes it well-suited for personalized healthcare. The observed correlations among 
glucose, insulin, carbohydrate intake, and physical activity are consistent with known clinical 
patterns, validating the model’s practical relevance. Overall, this framework offers a promising 
solution for real-time, privacy-preserving diabetes management. 

5. Conclusion 
The development of intelligent, privacy-conscious insulin prediction systems has become 
essential in managing diabetes, especially as real-time health monitoring through CGM devices 
becomes widespread. This work introduces a robust framework that leverages the principles of 
federated learning and algorithmic optimization to deliver accurate insulin predictions while 
safeguarding sensitive patient data. By distributing the training process across multiple clients 
and employing optimized decision tree models, the system ensures that learning is tailored to 
individual physiological patterns without centralizing raw data.This approach promotes a 
higher level of personalization, which is critical in the context of diabetes care where responses 
to insulin are highly individualized. The integration of multiple features—such as carbohydrate 
intake, physical activity, and glucose variability—allows the model to interpret dynamic 
relationships that influence insulin needs. Evaluations indicate reliable model convergence, 
reduced prediction errors, and consistent performance across varied patient profiles. 
Additionally, the use of federated learning reduces communication overhead and ensures 
compliance with data protection norms, making it suitable for real-world healthcare 
environments.Through a systematic processing pipeline—from data acquisition and 
preprocessing to feature extraction, model training, and result interpretation—this study 
demonstrates the viability of combining machine learning, optimization, and distributed 
computing to address complex health challenges. The framework not only ensures predictive 
accuracy but also aligns with modern ethical standards regarding data security and patient 
autonomy.Moving forward, the current system can be expanded by incorporating deep learning 
architectures, such as federated LSTM or GRU networks, to better capture temporal 
dependencies in CGM data. Further, real-time deployment through mobile health (mHealth) 
platforms could enable interactive insulin management tools for patients and clinicians. 
Integrating continuous feedback loops based on patient behavior and medical feedback could 
refine prediction quality. Finally, incorporating additional biosignals, such as heart rate or stress 
indicators, could help build a more holistic view of a patient's condition, opening the door to 
advanced decision support systems in personalized diabetes care. 
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