

 812

SSIS DATA MIGRATION AND CLOUD PERFORMANCE EVALUATION BY
OPTIMIZING QUERY USING THE BULK TRANSACTION LOCK TUNING

ALGORITHM

Mr. Yazharivan D S a*
aPost Graduate Student, Department of Computer Science and Engineering, School of

Engineering and Technology, Jeppiaar University, Chennai, Tamil Nadu, India;

Mr. C Thiyagarajan b
bAssistant Professor, Department of Computer Science and Engineering, School of

Engineering and Technology, Jeppiaar University, Chennai, Tamil Nadu, India

Dr.J.Arokia Renjith c
cProfessor and Dean, School of Engineering and Technology, Jeppiaar University, Chennai,

Tamil Nadu, India

*Corresponding Authors: Mr. Yazharivan D S and Mr. C Thiyagarajan
Post Graduate Student, Department of Computer Science and Engineering, School of

Engineering and Technology, Jeppiaar University, Chennai, Tamil Nadu, India
Email: dsyazharivan@gmail.com and thiyagarajan.ju@gmail.com

Abstract

Data migration plays a critical role in modern data warehousing, ensuring seamless
transfer of large datasets between systems. However, the performance of such migrations
is often hindered by sub-optimal query execution and inefficient locking mechanisms,
especially when dealing with bulk transactions. This project focuses on enhancing the
efficiency of data migration using SQL Server Integration Services (SSIS) by
implementing advanced query optimization techniques and introducing the Bulk
Transaction Lock Tuning Algorithm. The proposed algorithm minimizes lock contention
during high-volume data transfers, enabling concurrent operations and reducing
execution time. By integrating query optimization practices, such as indexing strategies
and execution plan analysis, the solution further enhances data pipeline throughput.
Comprehensive performance evaluations demonstrate significant improvements in
migration speed, resource utilization, and system scalability. A detailed performance
evaluation of the proposed approach is conducted through a series of benchmarks on
large-scale datasets. Results demonstrate significant reductions in migration times,
improved resource utilization, and increased system throughput. The integration of these
techniques within SSIS pipelines provides a robust framework for enterprises to handle
complex data migration scenarios with minimal downtime and optimal performance.
This research provides a robust framework for organizations to optimize SSIS-based data

International Journal of Innovation Studies 9 (1) (2025)

 813

migration workflows, ensuring reliable, high-performance data transfer for large-scale
enterprise applications.
Keywords— SQL Server Integration Studio, Performance Improvement, Date
Migration, Cloud Performance, Cost Efficiency, Query, SQL Server Management
Studio, Stored Procedure

1. INTRODUCTION

Microsoft SQL Server Integration Services (SSIS) emerges as a robust and versatile tool
designed to address the complexities of data migration. SSIS provides a powerful
platform for extracting, transforming, and loading (ETL) data, enabling organizations to
manage large-scale migrations with efficiency and reliability. With features such as data
cleansing, error handling, and workflow automation, SSIS plays a pivotal role in ensuring
that data migration projects are executed seamlessly. This introduction explores the
significance of data migration in modern enterprises and highlights the indispensable role
of SSIS in simplifying and enhancing this process.
Through its advanced capabilities, SSIS not only facilitates data migration but also
empowers businesses to achieve integration, scalability, and data-driven insights.
However, as organizations grow and adapt, their data requirements often necessitate the
transition from legacy systems to modern platforms, the integration of disparate data
sources, or the consolidation of databases to streamline processes. This critical process,
known as data migration, involves transferring data between systems, ensuring its
accuracy, completeness, and usability in the target environment.
The performance of a data migration process significantly impacts its feasibility and
success. Inefficient migrations can result in prolonged downtime, higher operational
costs, and disruptions to business continuity. This is particularly critical in large-scale
enterprise environments, where even minor delays can have cascading effects across
operations. SSIS, despite being a powerful tool for data integration and migration, can
experience performance degradation due to several factors:

Inefficient Locking Mechanisms: Database locking is essential to ensure data integrity
during concurrent operations. However, when managing bulk transactions, traditional
locking mechanisms can become a bottleneck, leading to lock contention and reduced
concurrency. One of the standout advantages of cloud-based databases is their ability to
scale on demand. Businesses can scale up or down based on workload requirements
without having to worry about the limitations of on-premise hardware. For instance, if
an e-commerce website experiences a surge in traffic, the database can scale
automatically to accommodate the higher volume of transactions and data.
A Database Designer is involved in the initial stages of database creation, focusing on
how data will be structured and organized. They work closely with business analysts,
software developers, and stakeholders to design databases that efficiently meet business
needs.
Data Modeling and Structure: Database designers are responsible for creating data
models, typically using techniques like Entity-Relationship Diagrams (ERD) to represent
how different entities in the system relate to each other. Their designs form the blueprint

International Journal of Innovation Studies 9 (1) (2025)

 814

of the database, ensuring that it can handle the necessary types of data, relationships, and
operations.
Future-Proofing the Design: Designers consider the future growth and expansion of the
database, ensuring that the design will scale as the application grows. This might involve
modular database designs that can be expanded without requiring a complete overhaul.
This project explores the crucial role of data migration in organizational success and
delves into how SSIS serves as a cornerstone for executing efficient, reliable, and
scalable data migration processes. By examining its features, use cases, and best
practices, we aim to highlight the value of SSIS as a tool that empowers businesses to
navigate the complexities of modern data ecosystems and unlock actionable insights from
their data.

2. LITERATURE REVIEW
One of the key challenges in SSIS-based data migration is optimizing query execution,
particularly when handling bulk transactions. Inefficient query performance can lead to
prolonged execution times, high resource consumption, and potential system downtime. In
response to these challenges, researchers have explored various optimization techniques,
including indexing strategies, partitioning, and transaction management. Among these,
bulk transaction lock-tuning algorithms have emerged as a promising solution to enhance
performance by reducing contention and improving concurrency in data migration
processes.
This literature review examines existing research on SSIS data migration, cloud
performance evaluation, and query optimization techniques. It explores the impact of bulk
transaction lock-tuning algorithms on query execution efficiency and assesses their
effectiveness in minimizing migration delays. By synthesizing prior studies, this review
aims to provide a comprehensive understanding of how these techniques contribute to
improved data transfer rates, reduced resource overhead, and enhanced cloud performance.

2.1. Performance Optimization of MySQL Database
The Condition is crucial for any enterprise application as it affects the overall system

performance. However, the optimization process is a non-trivial task even for
experienced database administrators due to many underlying challenges. Due to the
importance of database optimization, this domain has been researched for the past several
years. In this analysis starting with discussing the importance of an optimum database
for the overall performance, then we focus on the reasons behind the poor performance
of database management systems. Database optimization is divided into two main
categories Physical design-based optimization and Configuration parameter-based
optimization.

2.2. Query Reconstruction in Medical Case Description Using Query Performance Predictors
In this paper, we take advantage of query quality predictors to process long clinical notes
with redundant content and predict query intent to reconstruct the original query.
Experimental results on the standard Text Retrieval Conference (TREC) CDS track
dataset confirm the superior performance of the proposed method.

International Journal of Innovation Studies 9 (1) (2025)

 815

2.3. An Offline Profile-Guided Optimization Strategy for Function Reordering on
Relational Databases
The objective of this project is to propose an offline, profile-guided optimization strategy
for reordering functions within relational databases to enhance query execution
efficiency. By analyzing execution profiles and identifying frequently accessed
functions, the Project aims to optimize function order to reduce instruction cache misses
and improve overall database performance. This approach seeks to maximize relational
database efficiency through strategic function reordering, offering a structured
framework that can be applied to various database systems for performance
improvement.

2.4. Optimization of Database Operations in the Application for Text Corpus Analysis
The objective of this project is to develop and implement optimized database operations
tailored for applications in text corpus analysis. It focuses on enhancing database
performance for large-scale text data by improving query efficiency, storage
management, and indexing methods. This optimization aims to streamline data retrieval
and processing within text analysis applications, thereby reducing computational load
and improving analysis speed. The Project seeks to provide a robust framework for
efficient database handling in the context of extensive text corpus analysis.

2.5. Distributed HBase Cluster Storage Engine and Database Performance Optimization
The objective of this project is to develop and optimize a distributed HBase cluster
storage engine to improve database performance in large-scale data environments.
Focusing on performance bottlenecks in HBase’s storage and retrieval processes, the
project aims to enhance data access speed, scalability, and system efficiency through
storage engine optimizations and
tailored performance strategies. This research provides solutions to optimize HBase
cluster operations, making it suitable for high-demand applications requiring robust,
distributed database performance.

2.6. Database Storage Format for High-Performance Analytics of Immutable Data
The objective of this project is to propose and evaluate a database storage format
specifically designed for high-performance analytics of immutable data. This research
aims to investigate the unique challenges associated with storing and processing
immutable data in databases, focusing on optimizing read performance, data
compression, and query execution efficiency. By analyzing existing storage formats and
introducing innovative techniques tailored to immutable data, the study seeks to enhance
analytical capabilities and provide insights into best practices for managing immutable
datasets in various applications.

3. OBJCTIVE
This will be achieved through the implementation of advanced query optimization
techniques and the development of a novel Bulk Transaction Lock Tuning Algorithm.
The project seeks to optimize query execution by identifying and resolving inefficiencies
in SQL queries, such as implementing indexing strategies, tuning query plans, and

International Journal of Innovation Studies 9 (1) (2025)

 816

employing partitioning to improve data retrieval and loading speeds while minimizing
resource consumption like CPU, memory, and disk usage.

Figure 1: Data Migration From Source Database to Target Database

 Scalability of Database Performance Optimization:
o Many cloud databases struggle to scale efficiently with increased data loads, especially in

high-demand environments. Further research is often needed on dynamic scaling
mechanisms tailored for cloud infrastructure.

o Real-time Data Processing and Analytics: Cloud environments often have limitations
in handling real-time processing and analytics simultaneously with large datasets. Gaps
exist in optimizing databases to manage both without performance trade-offs.

o Multi-cloud and Hybrid Cloud Challenges: Optimization across multi-cloud or hybrid
cloud setups poses unique challenges, especially with data migration and synchronization.
Research is ongoing to develop solutions that reduce performance bottlenecks in such
complex environments.

o Migrating large volumes of data between systems is critical for enabling analytics and
reporting. SSIS is widely used for such migrations due to its robust ETL capabilities.
However, as data volumes grow and business requirements evolve, SSIS-based data
migration workflows face significant performance, primarily stemming from inefficient
query execution and lock contention during bulk transactions.

o Inefficient queries, such as those lacking proper indexing or optimized execution plans,
lead to slower data extraction and loading, high CPU and memory usage, and prolonged
migration times. This contention causes delays, deadlocks, and decreased throughput,
severely impacting overall migration efficiency. These issues are particularly acute in
large-scale environments where downtime or performance degradation can disrupt
business operations and incur significant costs.
To enhance SSIS performance by optimizing data migration workflows through
advanced query tuning techniques. By implementing WITH (TABLOCK) and bulk
transaction optimizations, the project focuses on reducing execution time, minimizing
lock contention, and improving CPU efficiency. The objective is to ensure faster,
scalable, and cost-effective data migration while optimizing resource utilization.
Ultimately, this approach enables organizations to handle large-scale data transfers

International Journal of Innovation Studies 9 (1) (2025)

 817

seamlessly efficiently, and reliably.

4. METHODOLOGY
The implementation of BLOA optimizes both CPU and memory usage by streamlining
lock acquisition, resulting in quicker query execution times. As a result, BLOA
contributes to overall cloud computing efficiency by enhancing resource allocation and
enabling faster data throughput, ultimately leading to improved user experience and
system scalability. In the context of this project, BLOA plays a vital role in reducing
query execution time from m seconds to just m/4 seconds, demonstrating substantial
improvements in database performance and cloud resource utilization.
This algorithm is a valuable solution for organizations requiring efficient data processing
in cloud environments, particularly in applications that involve frequent, high-volume
data operations. The system will implement a hybrid optimization approach combining
traditional query optimization techniques with learning models for workload. Techniques
such as reinforcement learning will be explored to adaptively adjust database parameters
in real time. Table Lock and load algorithm can be implemented here.

 Bulk Lock Optimization Algorithm: The Bulk Lock Optimization Algorithm (BLOA)
is designed to enhance the performance of bulk data operations within a cloud-based
database environment by leveraging the WITH (TABLOCK) locking hint. The algorithm
applies

Table-level locking during high-volume data insertions, such as when handling hundreds
of thousands of records. By minimizing row-level locks, BLOA reduces lock contention
and improves data insertion speeds, which is essential in high-traffic databases where fast
data processing is critical.

 WITH(TABLOCK): Table-level Lock: When WITH (TABLOCK) is specified, SQL
Server places a shared or exclusive lock on the entire table, depending on the operation
type (e.g., SELECT, INSERT, UPDATE, DELETE). Lock Duration: The table remains
locked for the duration of the transaction, which prevents other transactions from
modifying or reading the table, depending on the lock type. Prevents Deadlocks: Because
it locks the entire table, WITH (TABLOCK) reduces the chance of deadlocks by
eliminating row- or page-level lock conflicts. Improved Performance in Bulk Operations:
For bulk inserts or large updates, TABLOCK can reduce overhead by minimizing the
number of locks SQL Server has to manage.
When to Use: For bulk data operations (e.g., bulk inserts or updates) where locking the
entire table simplifies the operation and reduces lock management. When consistency is
required across the entire table during a read or write operation.For single-user
environments or operations during maintenance windows where concurrency is not an
issue

International Journal of Innovation Studies 9 (1) (2025)

 818

5. DATA MIGRATION
Now, we have created a stored procedure for the data insert operation to enhance SSIS
performance. This procedure is designed to handle high-volume transactions efficiently,
minimize lock contention, and optimize resource utilization. By implementing bulk insert
techniques and query optimization strategies, we ensure faster data processing, reduced
system overhead, and improved overall scalability. Performance testing will be
conducted to measure the improvements in execution time, concurrency, and resource
consumption, validating the effectiveness of this approach in real-world data migration
scenarios.

5.1. QUERY IMPLEMENTATION AND EXECUTION
CREATE PROCEDURE [EmployeeWorkExperienceStoredProcedure]
AS
BEGIN
TRUNCATE TABLE EmployeeWorkExperience
INSERT INTO EmployeeWorkExperience
Select EmployeeName, FirstName, MiddleName, LastName, EmployeeNumber,
EmailID, UserName, OfficePhone, CompanyName, DepartmentName, LocationName,
DesignationName, JoiningDate, ActiveStatus, MaritalStatus, BirthPlace, BirthDate,
Gender, Age, WorkExpCompanyName, JobTitle, JobDesc, EmployedFrom,
EmployedTo, PastExpYears, PastExpMonth, TotalPastExperience CurrentExpYears
CurrentExpMonth, TotalCurrentExperience, TotalExpYears, TotalExpMonth,
TotalYearsOfExperience
FROM SummaryEmployeeWorkExperience WITH(NOLOCK)
End
GO

Now, execute the stored procedure "EXEC EmployeeWorkExperienceStoredProcedure",
which is designed to truncate the EmployeeWorkExperience table and insert 150,000
records from the SummaryEmployeeWorkExperience table.

Figure 1: Execution Result Screenshot, it takes 44.750 seconds

Figure 2: Execution Result Screenshot of SSIS Package, it takes around 11 seconds

International Journal of Innovation Studies 9 (1) (2025)

 819

6. IMPLEMENTATION RESULT

After implementing the WITH (TABLOCK) keyword in the stored procedure, we
observed significant improvements in query performance. This modification allowed
bulk inserts to be completed more efficiently by reducing lock contention during data
operations. Performance analysis through the query execution plan highlighted reduced
I/O and CPU usage. The adjustment proved beneficial for handling large datasets,
especially when inserting 150,000 records into the Employee Work Experience table,
resulting in faster execution times and enhanced throughput. To further enhance SSIS
performance, we have modified the stored procedure by incorporating the WITH
(TABLOCK) hint during the data insert operation. This optimization allows SQL Server
to acquire a table-level lock instead of multiple row-level or page-level locks, thereby
reducing lock contention and improving concurrency during bulk inserts.

6.1. QUERY IMPLEMENTATION AND EXECUTION
ALTER PROCEDURE [EmployeeWorkExperienceStoredProcedure]
AS
BEGIN
TRUNCATE TABLE EmployeeWorkExperience
INSERT INTO EmployeeWorkExperience with(tablock)
Select EmployeeName, FirstName, MiddleName, LastName, EmployeeNumber,
EmailID, UserName, OfficePhone, CompanyName, DepartmentName, LocationName,
DesignationName, JoiningDate, ActiveStatus, MaritalStatus, BirthPlace, BirthDate,
Gender, Age, WorkExpCompanyName, JobTitle, JobDesc, EmployedFrom,
EmployedTo, PastExpYears, PastExpMonth, TotalPastExperience, CurrentExpYears,
CurrentExpMonth, TotalCurrentExperience, TotalExpYears, TotalExpMonth,
TotalYearsOfExperience
FROM SummaryEmployeeWorkExperience WITH(NOLOCK)
End
 GO.

Execute the Stored Procedure and see the output result with duration.

Figure 3: After Implementation - Execute the SP

International Journal of Innovation Studies 9 (1) (2025)

 820

Figure 4: After Implementation with(tablock)- Execute the SSIS Job

Execute the SP and Execution duration - 1.626 sec + 1.626 sec + 0.168 sec
Now, To efficiently handle large-scale data transformation, we have designed and
implemented SSIS pipelines for seamless data migration and execution tasks within SSIS
Studio. These pipelines are structured to extract, transform, and load (ETL) large
volumes of data while ensuring high performance, scalability, and minimal resource
consumption.
The SSIS data migration workflow leverages optimized data flow tasks, bulk data
handling techniques, and advanced transformation logic to process extensive datasets
efficiently. Additionally, parallel execution strategies and batch processing methods have
been integrated to enhance execution speed and reduce processing time.
By executing these SSIS packages, we aim to analyze performance metrics such as data
throughput, execution time, memory utilization, and overall system efficiency. This
structured approach ensures faster and more reliable data movement across
heterogeneous systems, making it easier to manage large-scale data migrations in
enterprise environments.
Before Query Modification:
Execution time was higher, with processing duration of 673.334 seconds and 709.236
seconds for large-scale data migration.CPU usage remained elevated, leading to higher
resource consumption and slower performance.
After Query Modification (WITH (TABLOCK) Implementation):
Execution time was significantly reduced, with improved processing times of 544.008
seconds and 529.89 seconds.CPU usage and overall system overhead were optimized,
resulting in better performance efficiency.
The implementation of WITH (TABLOCK) and query optimizations in the SSIS package
has successfully improved data migration performance by:
Reducing execution time by approximately 20% and Enhancing CPU performance,
leading to lower resource consumption.
Minimizing lock contention, resulting in faster data processing.
This performance enhancement ensures that large-scale data migration in SSIS is more
efficient, scalable, and reliable, allowing organizations to handle high data volumes with
minimal impact on cloud server resources.

International Journal of Innovation Studies 9 (1) (2025)

 821

Figure 5: SQL Server Integration Service Package for Data migration task

By executing these SSIS packages, we aim to analyze performance metrics such as data
throughput, execution time, memory utilization, and overall system efficiency. This

structured

Figure 6: SSIS Package Execution result Before and after the with(tablock)

implementation

The approach ensures faster and more reliable data movement across heterogeneous

International Journal of Innovation Studies 9 (1) (2025)

 822

systems, making it easier to manage large-scale data migrations in enterprise
environments.

 Figure 7: cloud CPU Performance impact before and after the with(tablock)
Implementation

After implementing the WITH (TABLOCK) optimization in the stored procedure, we
have observed a significant improvement in cloud server CPU performance. By allowing
SQL Server to acquire a table-level lock instead of multiple row/page locks, the
optimized query has reduced lock contention, minimized transaction overhead, and
enhanced concurrency during bulk data inserts.
This improvement has led to better CPU utilization, lower processing time, and reduced
resource contention, ultimately enhancing the efficiency of SSIS-based data migration
workflows. The updated execution process has resulted in faster data loading, reduced
query execution time, and an overall performance boost in the cloud environment.
Performance testing and monitoring indicate that CPU usage has stabilized under heavy
workloads, ensuring scalability, cost-effectiveness, and reliability for large-scale data
migration tasks. This enhancement strengthens the SSIS pipeline efficiency and provides
a more optimized and robust cloud-based data transformation solution.

6.2. OVERALL IMPLEMENTATION RESULTS
In comparison to the previous results, The comparison of execution performance before
and after the modifications reveals significant improvements in system efficiency. Before
the changes, the average execution time ranged from 698.32 seconds (11.64 minutes) to
963.89 seconds (16.06 minutes) across the 15 days.

International Journal of Innovation Studies 9 (1) (2025)

 823

The highest execution time, recorded on 10-Jul-24, was 963.89 seconds (16.06 minutes),
highlighting inefficiencies in the system. The lowest execution time during this period
occurred on 13-Jul- 24, at 698.32 seconds (11.64 minutes). On average, the execution
time before the modifications was approximately 817.79 seconds (13.63 minutes),
underscoring the need for system optimization. After the changes were implemented, the
average execution time showed a marked reduction, ranging from 516.20 seconds (8.60
minutes) to 621.09 seconds (10.35 minutes) over the next 15 days.

The best execution performance was achieved on 20-Jul-24, with an average execution
time of 516.20 seconds (8.60 minutes). Even the highest execution time during this
period, recorded on 17-Jul-24 at 621.09 seconds (10.35 minutes), was significantly lower
than the highest per-modification time. Overall, the average execution time after the
changes dropped to 561.45 seconds (9.36 minutes), reflecting a performance
improvement of approximately 31.36%. The comparison highlights that the
modifications effectively reduced the average execution time by 256.34 seconds (4.27
minutes), demonstrating a substantial enhancement in system performance.

Figure 8: Consolidated Performance result in graph representation.

7. CONCLUSION
This project successfully enhances SSIS performance by implementing advanced query
optimization techniques and the Bulk Transaction Lock Tuning Algorithm. By
addressing key challenges such as growing data volumes, inefficient query execution,
and lock contention, the proposed solution significantly improves data retrieval and
loading speeds, optimizes resource utilization, and enhances system stability.
The Bulk Transaction Lock Tuning Algorithm plays a vital role in reducing lock

International Journal of Innovation Studies 9 (1) (2025)

 824

contention, improving concurrency, and ensuring data integrity during high-volume
transactions. This results in faster data processing, reduced transaction delays, and
improved scalability for SSIS-based data migration workflows.
Additionally, by optimizing server utilization and reducing reliance on costly monitoring
services, this approach helps minimize operational expenses while maintaining high
performance and reliability. Organizations can now achieve efficient, scalable, and cost-
effective data migration, enabling them to adapt to increasing data demands.
In conclusion, this project significantly improves SSIS performance, providing a robust
and optimized framework for high-speed, reliable, and scalable data transfers across
heterogeneous systems. The proposed solution not only enhances operational efficiency
but also equips businesses with powerful tools to meet evolving data migration
challenges in today’s dynamic digital landscape.

REFERENCES

1. Samson, S., & Aponso, A. (2020). An Analysis on Automatic Performance Optimization
in Database Management Systems. 2020 World Conference on Computing and
Communication Technologies (WCCCT), 6, 6–
9. https://doi.org/10.1109/wccct49810.2020.9169995

2. Chen, W., & Chung, Y. (2023). An offline Profile-Guided optimization strategy for
function reordering on relational databases. 2022 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 967–
972. https://doi.org/10.1109/smc53992.2023.10394026

3. Aytekin, A. (2021). Comparative analysis of the normalization techniques in the context
of MCDM problems. Decision Making Applications in Management and
Engineering, 4(2), 1–25. https://doi.org/10.31181/dmame210402001a

4. Barakhnin, V. B., Karpov, M. V., Machikina, E. P., & Musasbayev, R. R. (2024).
Optimization of Database Operations in the Application for Text Corpus Analysis. 2024
20th International Asian School-Seminar on Optimization Problems of Complex Systems
(OPCS), 1–6. https://doi.org/10.1109/opcs63516.2024.10720387

5. Zhang, H., & Rong-Li, G. (2021). Distributed HBase Cluster Storage Engine and
Database Performance Optimization. IEEE Xplore. https://doi.org/10.1109/hpcc-dss-
smartcity-dependsys53884.2021.00341

6. Abdalla, M. H., & Karabatak, M. (2020). To Review and Compare Evolutionary
Algorithms in Optimization of Distributed Database Query. 2020 8th International
Symposium on Digital Forensics and Security (ISDFS), 1–
5. https://doi.org/10.1109/isdfs49300.2020.9116418

7. Wang, L., Wang, D., & Li, W. (2021). Research on big Data query Optimization Method
of power System substation equipment Condition monitoring. 2022 IEEE/IAS Industrial
and Commercial Power System Asia (I&Amp;CPS Asia), 1479–
1483. https://doi.org/10.1109/icpsasia52756.2021.9621504

8. Ding, Z. (2020). Study of Multi Ant Colony Genetic Algorithm in Query Optimization
of Distributed Database. 2020 2nd International Conference on Artificial Intelligence
and Advanced Manufacture (AIAM), 83–
89. https://doi.org/10.1109/aiam50918.2020.00022

International Journal of Innovation Studies 9 (1) (2025)

 825

9. M. O. Lewis, B. W. Young, L. Mathiassen, A. Rai and R. J. Welke, "Business process
innovation based on stakeholder perceptions", Inf. Knowl. Syst. Manag., vol. 6, pp. 7-27,
2007.

10. Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya, V., & Syamala, M.
(2004). Database Tuning Advisor for Microsoft SQL Server 2005. In Elsevier
eBooks (pp. 1110–1121). https://doi.org/10.1016/b978-012088469-8.50097-8

11. Williams, H. E., & Lane, D. (2004). Web Database Applications with PHP & MySQL,
2nd Edition.https://www.amazon.com/Web-Database-Applications-PHP-
MySQL/dp/0596005431

12. Hastig, G. M., & Sodhi, M. S. (2019). Blockchain for Supply Chain Traceability:
Business requirements and critical success factors. Production and Operations
Management, 29(4), 935–954. https://doi.org/10.1111/poms.13147

13. Banerjee, J., & Hsiao, D. K. (1978). Performance study of a database machine in
supporting relational databases. Very Large Data Bases, 319–329. https://dblp.uni-
trier.de/db/conf/vldb/vldb78.html#BanerjeeH78

14. Christen, P. (2012). Data Matching: Concepts and techniques for record linkage, entity
resolution, and duplicate detection. http://ci.nii.ac.jp/ncid/BB10533065

15. Schlosser, R., Kossmann, J., & Boissier, M. (2019). Efficient scalable multi-attribute
index selection using recursive strategies. 2022 IEEE 38th International Conference on
Data Engineering (ICDE), 1238–1249. https://doi.org/10.1109/icde.2019.00113

16. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., & Neumann, T. (2015). How
good are query optimizers, really? Proceedings of the VLDB Endowment, 9(3), 204–
215. https://doi.org/10.14778/2850583.2850594

17. Duan, S., Thummala, V., & Babu, S. (2009). Tuning database configuration parameters
with iTuned. Proceedings of the VLDB Endowment, 2(1), 1246–
1257. https://doi.org/10.14778/1687627.1687767

18. Narayanan, D., Thereska, E., & Ailamaki, A. (2005). Continuous resource monitoring for
self-predicting DBMS. Modeling, Analysis, and Simulation on Computer and
Telecommunication Systems, 239–248. https://doi.org/10.1109/mascot.2005.21

19. Rodd, S. F., & Kulkarni, U. P. (2014). Adaptive self-tuning techniques for performance
tuning of database systems: a fuzzy-based approach with tuning moderation. Soft
Computing, 19(7), 2039–2045. https://doi.org/10.1007/s00500-014-1389-3

20. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F. M., Rizzi, W.,
& Simonetto, L. (2018). Genetic algorithms for hyperparameter optimization in
predictive business process monitoring. Information Systems, 74, 67–
83. https://doi.org/10.1016/j.is.2018.01.003

21. Ganguly, S., Hasan, W., & Krishnamurthy, R. (1992). Query optimization for parallel
execution. SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, 9–18. https://doi.org/10.1145/130283.130291

