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Abstract

Cardiovascular diseases (heart diseases) are the essential driver ofmortality worldwide. The soonerthey can be
expectedand classified, the more noteworthy the quantity oflives that can be saved. An electrocardiogram (ECG) is
a pervasive, financially savvy, and harmless instrument for evaluating the heart's electrical movement and is used
for the distinguishing proof of cardiovascular diseases. This paper utilized deep learning ways to deal with four
critical cardiovascular diseases: deviant heartbeat, myocardiallocalized necrosis, history of myocardial dead tissue,
and ordinary people, using a public ECG pictures dataset of heart patients. The exchange learning approach was
inspectedusing the low-scale pre-trained deep neural networks Squeeze Net and Alex Net. A novel convolutional
neural network (CNN) engineering was presented for the expectation of heart irregularities. Third, the recently
portrayed pre-trained models and our recommended CNN model filled in as element extraction apparatuses for
standard machine learning algorithms, including support vector machine, K-nearest neighbours, decision tree, random
forest, and Naive Bayes. The exploratory outcomes demonstrate that the presentation measurements of the
proposed CNN model outperform those of existing works, accomplishing 998.23% accuracy, 98.22% recall,
98.31% precision, and 98.21%F 1 score. Moreover, the recommended CNNmodel achieves an ideal score 0f99.79% for
highlight extraction while utilising the NB algorithm.

Impact Statement: Artificial intelligence essentially improves personal satisfaction. In particular, the early ID of
diseases can add tosaving lives.

This review presents an original lightweight CNN engineering that upgrades the accuracy of cardiovascular

disease orderto 98.23% compared with present status of-the-craftsmanship techniques, using a dataset of ECG

pictures from heart patients, and is operable on a solitary computer processor, subsequently tending to

computational power limitations. The characterization accuracy has especially upgraded following the utilization

of the proposed technique as an element extraction device for traditional machine learning methods. An accuracy of
99.79% has been achievedwith the Naive Bayes algorithm. Thus, this strategy may be integrated into the medical
services loT environment. This will spur further artificial intelligence specialists to examine elective methodologies for
cardiovascular disease diagnosis.

Index Terms: Cardiovascular, deep learning, electrocardiogram (ECG) images, feature extraction, machine
learning, transfer learning.

I. INTRODUCTION

Asperthe World Wellbeing Association, cardiovasculardiseasesare the essential driverof mortality internationally.
They are answerable foraround 17.9million fatalitiesevery year, comprising 32% ofworldwide mortality Roughly
85% of all fatalities coming about because of cardiovascular disease are owing to coronary failures, clinically alluded
toasmyocardial areasofdeadtissue (MI)[1]. A productive discovery of cardiovascular disease ata previousstage can
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save a few lives [1]. Different methodologies are utilized in the medical services framework to distinguish heart
problems, including electrocardiogram(ECG), echocardiography, cardiovascular attractive reverberation imaging,
processed tomography, andbloodtesting. The ECGisapervasive, smart, and harmlessinstrument forevaluating the
heart'selectricalmovement [4]. Itisused todetermine cardiovascular disordersrelated tohave the heart [4], [5]. A skilled
clinician can distinguish heart ailment through ECGwaves. This manual technique might yield incorrect discoveries
andistedious[5].

Progressions in artificial intelligence in healthcare hold huge potential to alleviate clinical blunders. In particular, the use of
machine learning and deep leaming systems for the computerised expectation of cardiovascular diseases. [3],[6]-[10].
Machine learning approaches require a specialist element for highlight extraction and choice to find appropriate elements
before the characterization step. Highlight extraction is the most common way ofreducing the quantity of elements
inadatasetby changingor extendingthe information intoa new, lower-layered highlight space while keepingthe relevant
data ofthe information[11], [12].

Highlight extraction includes producing another arrangement of elements, unmistakable from the information
highlights, by consolidatingunique elementsintoa lower-layered space that holds the larger part, while perhapsnotall,
ofthe data from the info information. The most perceived highlight extraction procedure is head part examination [ 13], [14].
Highlight choice is the most common way of wiping out unessential and excess elements (aspects) from the dataset
during the preparation of machine learning algorithms. Include determination approaches can be arranged as solo,
which don't need yield names, and managed, which use yield marks for highlight choice. Directed include choice
envelopsthree techniques: the channel approach, the covering strategy, and the installing technique [11], [12].

Various machine learning techniques have been utilized to conjecture cardiovascular disorders. Soni et al. [15] compared
several
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Fig. 1 Abstract concept of machine learning and deep learning.

Machine learningalgorithms, including decisiontree (DT), Naive Bayes

(NB), K-Nearest Neighbours(K-NN), and Neural Network (NN), applied tothe UCI Cleveland heart disease dataset. They
discovered that DT displayed the most noteworthy accuracy at 89%. Dissanayake and Md Johar [16] inspected the
effect of the component determination technique on machine learning for anticipating heart dieses utilizing the UCI
Cleveland heart disease dataset. They broke down different component determination philosophies, including
ANOVA, Chi-square, forward and in reverse choice, and Tetherrelapse. Accordingly, they utilized six machine learning
classifiers: Decision Tree (DT), Random Forest (RF), Support VectorMachine (SVM), K-Nearest Neighbours (K-
NN), Logistic Regression (LR), and Gaussian Naive Bayes (GNB). The element choice cycle improved forecast
accuracy, accomplishing a most extreme grouping accuracy of 88.52% utilizing the DT classifier through the
retrogressive component determination strategy. The use of machine learning methods, including Naive Bayes, Support
Vector Machines, and Decision Trees, was analysed in [17] using ten times cross-approval on the South African
coronary illness dataset containing 462 events. Naive Bayes (NB) yielded the most ideal results in heart disease
detection, accomplishingan accuracy of71.6%, sensitivity of63%, and specificity 0of76.16%. Kimetal.
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[18] assessed the prescient adequacy of NN, SVM, CMAR, DT, and NBalgorithms for cardiovascular diseases
utilising two datasets: ultrasound picturesofcarotid arteries (CAs)and heart rate variability (HR V) got from ECGsignals.
The incorporated extricated highlights from the CAs+ HRV dataset accomplished better precision thought about than
the singular elements of CAs and HRV. Thusly, the SVM and CMAR classifiers outperformed the others with
correctness 0f89.51%and 89.46% separately.

Onthe otherhand, deeplearning, whichisasubsetofmachine learning, freely distinguisheslarge featuresandpatterns
from datasets generated in the clustering step, eliminating the need for externalisation steps for light extraction and
decision Figure 1 illustrates the concept of machine learning and deep learning. In deep learning, a model is
constructedby collecting hidden neural networks. Convolutional Neural Network (CNN) is an in-depth study that
hasproduced commendable results in image

sequencing.

Deep learning and pre-trained organizations can work with include extraction without requiring the retraining of the
whole organization, empowering move learningandarrangement [ 19]. This article utilizes pre-trained networks, explicitly
Squeeze Net [20] and Alex Net [21], as an exchange learning methodology to assess their viability in heart disease
characterization and as component extraction for traditional machine learning techniques in heart disease
classification. Additionally, a clever CNN model is proposed for foreseeing heart diseases utilizing ECG pictures,
which is utilized for highlight extraction of the ECG pictures following the preparation of the recently proposed
CNNmodel.

The main contributions of this study are summarized as follows.
1. The main contributions of this study are summarized as follows.

2. The proposed CNN model achieves a success speed 0f98.23%, which is best for learning on the continuous
task [22] and inferior Squeeze Netand Alex Net, which came t095.10%, 95.47%, and 96.79%difference.

3. This is, supposedly, the subsequent review using the ECG pictures dataset of heart
patients [23], which might persuade different specialists to examine elective procedures for
recognizing cardiovascular disorders with this dataset.

4. The transfer learning philosophy using Squeeze Net and Alex Net was inspected and stood out from the
proposed model.
5. The pre-trained networks Squeeze Net, Alex Net, and our recommended CNN model filled in as element

extractorstoapply the extricated highlights to common machine learning methods: SVM, K-NN, DT, RF, andNB. The
ideal results were achieved by our proposed CNN model for the NB algorithm, with an accuracy pace of 99.79%
recorded.

6. The rest of this article is organized as follows. Segment II gives the writing audit. Segment I1I clarifies the
techniquesandthe proposed CNNmodelutilizedinthisarticle. AreaIV depictsthe datasetand trialboundariesutilized.
Area V presents the outcomes and conversations, while Segment VI completes the paper and offers future
viewpoints.

II. RELATEDWORKS

Various examinations [24]-[27] have been embraced to consequently anticipate cardiovascular dieses by machine
learninganddeep learning techniques, utilizing ECG information in computerized or picture designs.

Bhartietal. [28] assessed machine learning and deep learning techniques on the UCI heart disease datasetto foresee two
categories. The deep learning algorithm achieved the best accuracy pace of 94.2%. The design of their deep
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learningmodelhasthree completely associated layers: the main layer contains 128 neurons, prevailed by a dropout layer
with a pace of 0.2; the subsequent layer comprises of 64 neurons, trailed by a dropoutlayerwith a pace of0.1; and the third
layerincludes 32 neurons. The ML procedures utilizing highlight determination and anomaly discovery achieved the
accompanying accuracy rates: RF at 80.3%, LR at 83.31%, K- NN at 84.86%, SVM at 83.29%, DT at 82.33%, and
XGBoost at 71.4%. The concentrate in [29] uncovered that deep learning is a more exact and helpful method for
different clinical issues, including expectation. Deep learning strategies will displace customary ML dependent on
include designing. Kiranyaz et al. [30] proposed a convolutional neural network (CNN)includingthree layersofa versatile
execution of one-layered (1-D) convolutional layers. This organization was prepared on the MIT-BIH arrhythmia
dataset to arrange broad ECG information streams. They accomplished accuracy paces of close to 100% and 97.6% in
the grouping of ventricular ectopic beats and supraventricular ectopic beats, separately. The concentrate in [31]
presented a CNN of'three 1-D convolutional layers, three max-pooling layers, one completely associated layer, and one
softmax layer. The channel aspects for the underlying two convolutional layers were laid out at 5, and a step of 2 was
utilized for the initial twomax-pooling layers. They accomplished a grouping accuracy of 92.7% for ECG pulses using
the MIT-BIH arrhythmia dataset.

Khan et al. [22]utilized an transfer learning philosophy using the pre-trained single shot detector (SSD)- MobileNet-v2
[32] to recognize cardiovascular disease from an ECG pictures dataset of heart patients by foreseeing four head
heart irregularities: abnormal heartbeat (AH), myocardial infarction (MI), history of myocardial infarction
(H.MI), and normal person (NP) classes. The text size was adjusted, and 12 angles of each ECG image were
brightened as a preprocessing method. The SSD is usedtoanalyse and characterize materials in the isolation phase.
The data set was divided into 80% for training and 20% for testing. A batch size 0f24, 200,000 preparation cyclesand
alearningspeed 0f0.0002 were usedtosolve the model. The preparation periodstretchedtoabout four days. Anaccuracy
rate 0f98.3% was obtained for the Ml section.

Rahmanetal. [33]introduceda deep CNN transferlearningphilosophy to foresee Coronavirus and four critical heart
inconsistencies using ECG pictures. The dataset had five classifications: Coronavirus, AH, MI, H. MI, and NP. Six
unmistakable pre-trained deep convolutional neural network, in particular ResNetl8, ResNet50, ResNetl01,
DenseNet201, inception V3, and MobileNet-v2, were utilized for characterization. Gamma revision, picture
scaling, and z-score standardization were utilized as arrangement

strategies for the ECG pictures. Thusly, in two-class characterization (Coronavirus and ordinary) and three-class
arrangement (Coronavirus, typical, and extra heart oddities), DenseNet201 outperformed different organizations
with accuracy paces 0f99.1% and 97.36%, separately. In the five-class order, Origin V3 outperformed different
organizations with an accuracy 0f97.83%.

Buddy et al. [36] presented a deep CNN transfer learning approach using pre-trained DenseNet for arrhythmia
classifications (AH) got from ECG signals in the PTB and MIT-BIH arrhythmia datasets, which were changed into
2-Dpictures. Due of the dataset'sunevenness, an information increase strategy wasexecuted. The DenseNet model
waschosen because ofits capacity toaddress the disappearing angle issue in deep organizations throughthe execution
of'thick associations among layers. Their model was assigned as CardioNet. The qualities for precision, recall, and F1
score were 98.62%, 98.68%, and 98.65%, separately.

Avanzato and Berritelli [37] presented a deep convolutional neural network consisting of four 1-D convolutional
levelstopredict three classifications of cardiovascular anomalies using ECGssignals from the MIT-BIH arrhythmia
dataset at each convolutional level cluster standardization level, rectified linearunit (ReLU)initial capacity, and was the
maximum controlled pooling layerwith a channel (bit) size of4. The bottom convolutional layerhad a channel size of 80,
while subsequent layers used a channel size of 4.

This engineering utilized a normal pooling layer related to a softmax layer for grouping, as opposed to using totally
associated layers. Thismodel achieved an accuracy level 0£98.33%.
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They call Acharya. [38]fostered a deep convolutional neural network consisting of four-layer convolutional

Input 7x7
1lolel1|1}le]|1 output 5x5 W: input size
1|1jo|21|o0f0]0 ﬂ 3|2]|2]3 F: Filter size
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Fig. 2 Example ofa convolution operation.

layers and three fully connected for myocardial localized lesion location using ECG signals from the PTB datasetIn
this example the cracked rectifier direct unit (Defective ReLLU ) and uses the actuation power layer. Each convolutional
layerwasa maximum pooling layer with channel size 2 and step 2. In that order, the channel sizes of the convolutional
layersare 102,24, 11, and9. The

number ofneurons in the fully connected layersis 30, 10, 2 different. A softmax layer followed the last fully connected layer.
They obtained 93.53% and 95.22% general accuracy speeds for ECG shots with and without noise removal,
respectively.

Nazandsoon. [39]converted the ECG stimuliinto 32 x 32 pairs of images. Theirmethod wastested using the MIT-
BIH dataset with pre- trained CNN images Alex Net, VGG19, and Commencement V3 to predict myocardial
infarction The move gain was used to remove features from sample previously reared strains were included. As a
result, SVM and K- NN features techniques were used for the parallel system. Using SVM, an accuracy 0of97.60% was
obtained.

INI.METHODS
A. Convolutional Neural Networks (CNN)

CNN is a special type of deep artificial neural network designed for image sequencing and processing in "deep
learning" The information image measures 227 x 227 x 3, which means that the width and height are 227 pixels, where
the depth (path)is 3. Animportant capability of CNNsisto extract important points fromthe input image using sigmoid or
softmax initialization capabilities to generate the expected Layer convolution method uses convolutional layers on the
info information, using a channel or part to create a component map Convolution is executed by traversing info across
channel Framework duplication is performedat each point, and soare the results Component maps accumulate. Figure 2
illustrates the critical diagram ofthe convolution function forthe depth contribution.

2(3|8|0

7|15(6(1 maxpoolb 7|8
6[3|6]|5 2x2 10| 9
10(2|7|9| stride=2

Fig. 3 Example of 2 x 2 max-pooling with stride =2.
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The convolution cycle shows linearity. In order to detect nonlinearity and its consequences, the convolution layeris
controlled by the actuation capacity level, e.g., ReLU orits variant. Following the convolution layer, the pooling layer, e.g.
Figure 3 illustratesthe critical diagram of maximum pooling for asingle depth contribution.

B. Pre-trained Deep Learning Models

Pre-trained deep neural networks can work with transfer learning, highlight extraction, and arrangement. This article utilizes
low-scaled SqueezeNet and AlexNet pre-trained CNN organizations, reasonable for exrecution on a solitary central
processor, for transfer leamning and component extraction. The transfer learning strategy is oftentimes utilized with pre-
trained deep neural networks applied to a novel dataset. Thusly, it could get benefits from the pre-trained network that
has gaineda scope of properties adaptable to similar to occupations. Most pre-trained networks have been preparedon
north of 1,000,000 photographs and can classify pictures into 1000 article types. In carrying out the transfer learning
technique, the terminal layers ofthe pre-trained network are subbed with new layersto secure the unmistakable elements of
the novel dataset. In this manner, the model goes through tweaking by being prepared on a novel dataset with
characterized boundaries, trailed by an assessment of its exhibition on a different test dataset. Pre-trained deep neural
networkscanactasan element extraction instrument, killing the requirement for tedious preparationendeavors. This article
uses highlights taken from pre trained organizations to prepare ordinary machine learning classifiers, includingSVM, K-
NN, DT, RF, and NB. The usage of pre-trained networks is clarified in the ensuing areas.

C. Proposed CNN Architecture
The proposed CNN model also contains six 2-D convolutional layers, three fully connected layers, three max

poolinglayers, eight faulty ReL U layers, eight group standardization layers, five dropout layers, depth
connection layerstwo, and softmax layer the total number of elements is 38. The structure ofthe proposed
modelisshown in Figure 4.

The proposed CNN model has two branches that aim to include more representatives: the stack branch and the
whole branch. The recommended CNN modelrequiresa227x227x3 dimensional information map. The info
image enters two branches atthe same time.
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Stack part of three superimposed 2-D 3x3 convolutional layers. Each of these two-layered convolution layers is
dominated by a split ReL.U layer and a group normalization layer.
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Fig. 4 Representation architecture of the proposed CNN mod

TABLE I LAYERS ANALYSIS OF THE PROPOSED CNN MODEL
No. Type Name Properties Input size Oulput size
1. Image Input Imageinput - 227x227x3 227x227x3
2. Convolution conv0l 64, 3x3, stride — 2, padding — same 227x227x3 1142114~64
3. Max Pooling maxpoal0] 6x6, stridde = 3, padding = same 1141 14x64 38x 3864
4. Convolution conv02 128, 3x3, stride = 2. padding = same 383804 19x19x128
5 Max Pooling maxpool02 6x6, stride 3, padding  same 19x19x128 Tx7=128
6. Convolution conv03 224, 3x3, stride = 2, padding = same T2Tx|128 4x4x224
7 Max Pooling maxpoolD3 6x6, stride = 3, padding = same 4x4x224 2x2x%224
8. Fully Connected fe01 16 227x227x3 1x1%16
9. Dropout dropout01_Ic 0.2 I1x1x16 1x1x16
10. Convolution conv04 32, 2x2, stride = |, padding = | 12116 2x2x32
11. Convolution conv03 64, 3x3, stride = 2. padding = 2 1x1x16 2x2x64
12. Depth concatenation depthca0l Two inputs of size 2x2x32, 2x2x64 2x2x96
13. Dropout dropout02 02 242%96 2x2
14. Depth concatenation depthear02 I'wo inputs of size 22296, 2x2x224 2x2
15. Dropout dropout03 0.2 2x2 2x2>
16. Convolution conv07 256, Ix1, stride = 1, padding = same 2x2 2x2x2!
17, Dropout dropout07 03 2x2 2x2x25
18. Fully Connected fc02 512 2x2 1x1x512
19. Dropout dropout02_Ie 0.3 1=1 1xIx512
20. Fully Connected fc03 4 1x1%5 1x1x4
21. Softmax Softmax B Ix1x4 Ix1x4
22. Classitication Output Output Cross-entropy as loss tunction 1x1x4 Ix1x4
leaky RelLU: scale=0.1, batch normalization: Mean Decay=0.1, Variance Decay=0.1, Epsilon=0.00001, total
number of learnable parameters=3430308

Stricter pooling layer. The LeakyReLU layeruses a leakyReL. U rule capacity of size 0.1. Unlike ReLU, leakyReLU is
slightly skewed in the negative position, which may preclude the issue of idle neurons [46]. The group
normalization layer normalizes the inputs of each subgroup, serves to provide faster model preparation and improve
accuracy. The maximum pooling layer implements the maximum pooling process on the component mapby findingthe
strongest component in the location ofthe channel this directs the reduction ofthe spatial components ofthe element
map, consequently comes with reducing the size of the boundaries and the computational cost of modelling. The
recommended CNN modelutilizes max-pooling layerswith achannelsize of6x6 anda step of 3. Thisbranch utilizes
64, 128, and 224 channels toremove deep elements from the information in the first, second, and third convolutional layers,
separately. The result aspects at the finish of the stack branch are 2 x 2 x 224,

The underlying layer in the total engineering of our proposed CNN modelis a totally associated layer, whichisreflected
in its assignment. In our idea, the totally associated layer contains 16 neurons. In any case, every node in the
connecting layer is connected to every node in the first layer. Thisis the veining of the convolution layer in contrast to the
former clear veins in which the convolutional channel segments are not set in stone While most of boundaries in the CNN
start from the completely associated layers, the computational requests of the convolutional layerneed altogether more
noteworthy memory utilization. A completely associated layer is prevailed by a leakyReLU layer, a bunch convolutional
layer, anda dropout layer, which moderate overfitting and improve the model's speculation limit.
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Figure 4 outlines that the two convolutional layers, assigned asconv04 and conv05, are situated at a similar level resulting
tothe completely associated layerblock to work with the extraction of greater elements.

Conv04 isa 32 2x2 convolutional layer with a step of 1 and cushioning of 1, while conv05 isa 64 3x3 convolutional
layer with a step of 2 and cushioning of 2. The element maps from these two convolutional layers are connected to
yielda component guide ofaspects 2 x 2 x 96. Following the connection ofelements, adropout layeriscarried out torelieve
the impact of connected includes and forestall overfitting.

The results delivered by the two branches are consolidated to frame a component guide of aspects 2x2x320. A
dropout layer is in this manner consolidated to moderate the model's overfitting. A 1x1 convolutional layer with 256
channelsisintegrated toimprove the model'snonlinearity and lessen the profundity oramount of component maps,
consequently bringing down computational costs.

Proposed CHN
model
aze

Input Preprocsssing Image datastore

w

Myocardial Infarction

History of Myocardial Infarction

Fig.5. Schematic ofusing the proposed CNN model for ECGimagesof cardiacpatients’ classification.

Toimprove the classification process, a fully connected layer consisting of 512 nodesis combined. The obtainedresults
include a fully connected layer with four nodes, as determined by the number of clusters tobe grouped, followedby a
softmax layertoestimate the overallresult.

Figure 5 shows the plan for utilizing the proposed CNN modelto

characterize ECG pictures of heart patients. The provided photographs go through preprocessing by trimming, scaling,
and expansion. The pre-processed

Preprocessing. Ascanbeseenin Fig.6,the ECG images in the dataset contain Header and footer information that
have no photographsare accordingly put away in the picture datastore. The proposed modelisshownin Fig. 6 Samples
fromthe electrocardiogram pictures dataset. (a) NP. (b) AH. (c)ML. (d)H. ML

using the predetermined preparation boundaries and the ECG pictures contained in the picture datastore. The model gains
elementsandalters its movable boundaries in like manner. Endless supply of preparing, the model is ready to assess ECG
pictures for the grouping of cardiovascular oddities intoone of four classifications: NP, AH, MI, andH.
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III. EXPERIMENTS

A. ECG Images Dataset of Cardiac Patients

The predetermined methodologies were assessed on the ECG Pictures dataset of cardiovascular patients [23]. This
datasethas 928 particular patient records ordered into fourkinds, as outlined in Table I1. The four classesare NP, AH,
MI, and H. Figure 6 delineates a few examples from the dataset. An NP is a person healthy with no heart issues. An
arrthythmia happens when the heart's electrical driving forces are exorbitantly fast, unnecessarily sluggish, or
sporadic, bringing about an unpredictable heartbeat. Myocardial dead tissue, usually referred to as cardiovascular
failure, happens when the blood stream in the coronary conduit reduces or stops, bringing about injury to the heart
muscle. The people with an H. MI have oflate recovered from myocardial localized necrosis or respiratory failure.

B. Experimental Settings

TABLET
PUBLIC ECG IMAGES DATASET DESCRIPTION ] L. . RSN P P R
No, Class Number of images ] |
| Normal person 284 leranminaie o LI A A AR LA In
2 Abnarmal Heartbear 233 T"-T J(J(Ml
3. Myocardial [nfarction 239 |
4 History of Mvocardial Infarction 172 1 ‘ AA AL LA L
‘T'otal 2K ) i '\"'] ool
l
TR ) 1 7 L A
L 7 H I~ S b g i o o AIJIM b Fig. 7. Sample from the ECG images dataset after performing cropping as a
| .
] b ot L) Whick ] ] PEprocessing.
e by L § ‘| | ' | |
1, ke " bodad abopolddd Lo i b ‘ I'ABLE 111
! Y R i, | [ ] TRAINING PARAMETERS AND VALUES 1OR DEEP LEARNING METHODS
L Ll L)
]f T 9 FET A 1 TR TR S i ol R l l
’ Weight Bia - Epoch
. ) . eigl as onloniy.  EPOChS
,(d)_ . _(vh), Qplmntzer Initializer Initializer Regulwiza no.
e o - . : ~ tion
Adam Xavier Zeros 0.0001 16
- Y y—$—4 1_ Y. Ve &
e e oo o o o A L vttt t— a4 GB NVIDIA GeForce 820M GPU' and running Windows
o
TIPS X AN i 1 N sl L 2 : 10 Pro 64-b.
2 ¥ 1 1 — . ™~ 1
i o relation to the features we need. Therefore, we have applied
(c) (d)

The examinations used MATLAB 2021b on an Intel Center 17-4510U computer processor working at 2.00
GHzwith 8GB ofRAM, andall photographs were trimmedtounderscore the huge highlights, as representedin Fig,
7. Moreover, all ECG pictures were scaled to a uniform goal of 227x227 with three channels (RGB) before model
preparation.

Information increase. Information increase was utilized on the dataset [47] to improve the heartiness and exactness of
the made model. It upgrades the dataset's picture amount and mitigates the results of preparing the model on an
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imbalanceddataset. Three increase strategies—revolution, flipping, and interpretation—were utilized on the predetermined
dataset [48]. Thisincreased the assortment toa sum of4,700 photographs.

Boundaries for deep getting the hang of preparing. Because of the computational power of hyperparameter
improvement, all preliminaries used the preparation settings determined in Table III. The Adam enhancer is used to
prepare the model for 16 ages with a minibatch size of 128. By the by, considering that the underlying leamingrate (LR) isthe
principal hyperparameter, a few LR values were utilized in the preliminaries, as point by point in the ensuing segment. In
light of these settings, the cycles per age absolute 29, and the all-out emphases for model preparation add up to 464.
Fivefold cross-approval wasutilized toaccomplish solid outcomesin testing and assessing the model. The dataset is
divided intofive portions, with four fragments dispensed for preparing and one section assigned for testing (3760
pictures for preparing and 940 pictures for testing).

Subsequently, five significant contrastsamong preparing and testing were executed. The resultsare the mean ofthe five
folds.

Its compute capability is2.1 anditisnot supportedby MATLAB 202 1b. Hence, all experiments were run ona single
CPU.

TABLEIV

PERFORMANCE MEASURES

Measures Defined as

Accuracy (TP+TN)/(TP+FP+FN+TN) (1)

Recall TP/(TP+FN) 2)

Precision TP/(TP+FP) 3)

F1 score (2 % Recall x Precision)/(Recall+Precision) (4)
TABLE V

NETWORKS PROPERTIES?

5 : No. of
No. of No. of
Network Depth ; Parameters
Layers Connections o
(million)
SqueezeNet 18 68 75 1.24
AlexNet 8 25 24 61.0
Proposed CNN 6 38 39 343
For all networks, input image size is 227x227x3.
" cass4 [TN|TN|TN | FP = class4 [TN|TN |FP|TN = cass4 |TN|FP|TN|TN = class4 | TP |FN|FN|FN
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Fig. 8.Semantic of the confusion matrices for four class’s results.

V. RESULTS AND DISCUSSIONS

Accuracy, precision, recall, F1 score, and training and testing lengths were utilized for execution investigation. The
estimations get from the assessment of information inside a disarray framework. Table V outlines the meanings of the
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measurements got from the disarray matrix. Accuracy is both the range of parameters and the number of parameters
expected asajudge, communicated asa quantity. Memory referstothe extentto which accurately anticipated positive
intentions are theoretically complete in the actual positive category. Precision refers to the extent to which expected
positive mood accuracy deviates from mood in the predicted positive category. The F1 score satisfies the weighted
normal of Recall and Precision. Thus, it involvesboth false negative values and false positive thinking.

Figure 8 outlines the semantics of the disarray lattice for four-class datasets, explicitly the ECG pictures dataset of
heartpatients. The exploratory exhibition measurements are gotten from the situations introducedin Table IV.

A. Results of Transfer Learning and Proposed CNN Model

The high-level plans of the pre-trained networks Squeeze Net and Alex Net were utilized to carry out the transfer learning
philosophy in our exploration. Both were at first prepared for the arrangement of 1000 picture classes. To adjust these
organizations for distinguishing the new assortment of ECG pictures in the dataset, we alter the last layers of these
models to line up with the new errand. In Alex Net, the last completely associated layer is subbed by another
completely associated layerofindistinguishable aspects.

Here, the totalnumber of layers in the network was counted, not even the convolutional layersand dense layers.

TABLE VI

CALCULATED PERFORMANCE MEASUREMENTS FOR SQUEEZE-NET, ALEXNET, AND THE
PROPOSED CNNMODEL FORDIFFERENTRL VALUES

A. R. P Fl Tl T2
Model R o o ) m
Squeeze-Net 0.01 2479  25.00 NaN NaN 245.0 23
(Transfer 0.001 24.15  25.00 NaN NaN 212.7 2.1
learning) 0.0001 9547 9543 96.07 9540 2199 2.2
AlexNet 0.01 24.15  25.00 NaN NaN 198.9 2.1
(Transfer 0.001 37.00 37.88  NaN NaN  209.5 2.1
learning) 0.0001 96.79 96.80 97.02 96.78 199.5 2.1

0.01 9724 9724 9731 9722 1894
0.001 97.89  97.89 9797 97.88 190.0 2.1
0.0001  98.23 98.22 9831 9821 190.7 2.0

LR: initial learning rate, A.: accuracy, R.: recall, P.: precision, F1: F1 score, T1: training time, T2: testing time.

3o
o

Proposed
CNN

The bold valuesindicate the bestresults. TABLE VII

PERFORMANCE MEASUREMENTS VALUES OBTAINED FOR EACHFOLD OF THEPROPOSED
MODEL
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A. R. P. F1 Tl T2
LR Folds  woy %) ) %) @  (m)
Fold-1 97.77 97.75 97.83 97.73 200.23 2.05

Fold-2 97.87 9786 97.89 97.86 185.88  2.00
Fold-3 9543 9548 9557 9539 185.08 1.97

04 Fold-4 97.13  97.11 9726 97.11 184.67 2.05
Fold-5 9798 9798 98.02 9799 191.00 1.98

Average 97.24 97.24 9731 97.22 189.37 2.01

Fold-1 99.15 99.15 99.15 99.15 18752 201

Fold-2 98.19 98.18 9823 98.16 191.57 2.08

0.001 Fold-3 95.96 9599 96.14 9594 190.17 2.10
' Fold-4 97.66 97.64 9780 97.63 185.62 2.16
Fold-5 98.51 98.50 9855 9851 19487 1.99

Average 97.89 97.89 9797 97.88 189.95 2.07

Fold-1 99.47 99.46 99.47 9946 195.12 2.03

Fold-2 97.66 97.64 97.74 97.61 18585  2.00

0.0001 Fold-3 97.55 97.53 9774 97.54 187.72  2.00

Fold-4 98.30 9828 9833 9827 196.80 2.01
Fold-5 98.19 98.18 9828 98.17 18792 199
Average 98.23 9822 9831 9821 190.68 2.01

Theboldvaluesindicate the average ofthe five folds.

The size ofthe neuronsisrelated to the size of our expected clusters, apparently four. Since SqueezeNet completely
removes overlapping layers, we replace a final convolutional layer, which distinguishes 1000 classes, with another
convolutional layerusing4 1x1 channels In the two pre-trained grids which isused, anew system layer is populated for
the previous one, resulting in terms of probabilities registered by the softmax layer Objects in the network a is
previously trained in and our proposed CNN isintroducedin Table V.

Table VI presents the performance measures of the pre-trained models (SqueezeNet and AlexNet) used in the
change learning philosophy, which are close to our proposed CNN model for the ECG image dataset. Specific learning
rate (LR) values were used for each sample: 0.01, 0.001, and 0.0001. The most effective improvement rate, with a
specificaccuracy of 98.23%, was achieved by our proposed CNN model at a learning speed of 0.0001. Table VII
presentsthe complete evaluation of the proposed model.

JIPREEESNRE e e

) 100 150 20 25 3 =

400 )

Fig. 9. Training Progress for our proposed CNN model onthe ECGimages dataset in fold-1 (LR: 0.0001 and other
hyperparameters are as in Table III).
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TABLE VIII
MODELS COMPARISON
Average Accuracy (%)
Model -
NP AH MI H. MI Average
Work in [22] 93.7 93.6 96.2 96.8 95.1
Proposed CNN 99.8 93.1 100.0 99.9 98.2
Average Precision (%)
NP AH MI H. MI Average
Work in [22 96.2 97.2 98.3 98.3 97.5
Proposed CNN 97.4 100.0 99.4 96.5 98.3

NP: normal person, AH: abnormal heartbeat, MI: myocardial infarction, H.MI: history of myocardial Infarction
classes.

The typical accuracy rate for the proposed CNN model showsreliably high outcomesnotwithstanding varietiesinthe RL
values. On the other hand, the pre-trained SqueezeNet and AlexNet models exhibit less than ideal execution at transfer
learning paces of 0.01 and 0.001, despite the fact that give barely further developed results while the learning rate is
changedin accordance with 0.0001. This is because ofthe way that, in move learning, the loadsofpre-trained modelsare
not procuredstarting from the earliest stage. Subsequently, to forestall entanglement in nearby minima, itis fitting to start
with a lower learningrate, for example, 0.0001, while utilizing move learning systems.

The typical accuracy rates are 96.79% for AlexNet and 95.43% for SqueezeNet, with a learning rate of 0.0001.
Alternately, the proposed CNN model exhibits better execution analysed than different models with respect to time
proficiency, as outlined in Table VI. Notwithstanding SqueezeNethaving the least boundaries and being a completely
convolutionalnetwork, ithas the mostunfortunate outcomes withrespect totime eftectiveness. The broad algorithmsin the
convolutional layers bring about delayed handling times, especially when executed on a solitary computer
processor stage.

Figure 9 delineates the preparation progression of our proposed CNN modelon the ECGpictures dataset in overlap 1
(learningrate =0.0001). The accuracy rate logically improves with each ensuingreiteration.

Besides, the misfortune decreasesstep by step asthe cycle propels, at last coming to 0.0043.

The disarray frameworks created for each overlay following the preparation of our proposed CNN models with alearning
pace 0f0.0001 onthe ECG pictures dataset are shown in Fig. 10.

Asfarasanyoneisconcerned, the sole distribution inthe writing that uses the indistinguishable data and arranges the
fourclassesisthe review

referredtoin[22], which hasbeen tended toin Segment I1. The dataset was partitioned into 80% for training and 20%
fortestingin [22].
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Fig. 10. Confusion matrices of the proposed CNN model for classification of heart diseases in the
ECG images dataset for each fold (RL: 0.0001 and other hyper-parametersare asin Table I1I).

TABLEIX

PROPERTIESOF THEEXTRACTED FEATURESFROMPRE-TRAINED NETWORKS

Pretrained Training Testing Vinie Arsivation
; / taken Feature
Network features size features size
(m) Layer
SqueezeNet 3760x196000  940x196000 13.37 conv10 (64)
AlexNet 3760x4096 940x4096 11.24 fc7 (20)
Proposed CNN 3760x512 940x512 10.77 fc02 (32)

The model was prepared with a group size of 24 and alearning rate of 0.0002. Their preparation span broadened almost
four days. Their distribution demonstrates a precision rate of 98.3% for class M1, but our proposed CNN model
outperforms this with an accuracy pace 099.4% forasimilarclass. Table VIII comparesthe discoveries from[22], where

the accuracy pacesof each class were gotten from their disarray network, with our proposed CNN model.

B. Results of Using Pre-trained Deep Learning Models As a Feature Extractor.

The pre-trained SqueezeNet and AlexNet networks were used to extract the features of the ECG images in the
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dataset. Aswell

TABLEX

CALCULATED PERFORMANCE MEASUREMENTS FOR MACHINE LEARNING ALGORITHMS THAT USE PRE-TRAINED

NETWORKS SQUEEZENET, ALEXNET, AND PROPOSED CNN AS FEATURES EXTRACTORAPPLIED ON ECGIMAGES
DATASET

Pretrainied Network Algorithm Ac::;:‘;lcy R:;)e;ll Prc(i:)lon Fl(:/z;)rc Tralm(n:; Time Tcs(u(lf)Tlmc

SVM 97.87 97.85 97.95 97.84 642.44 10.37

K-NN 85.00 84.88 86.20 84.53 24.19 611.49
SqueezeNet DT 89.15 89.04 88.98 88.70 2159.1 1.15
RF 98.94 98.93 98.95 98.92 7508.6 6.85

NB 73.94 74.12 75.64 74.05 1245.7 39.75

SVM 97.66 97.64 97.79 97.64 6.3357 0.2333

K-NN 90.32 90.18 91.13 90.17 1.0016 9.2097

AlexNet DT 91.38 91.29 91.43 91.19 11.8865 0.0656

RF 97.55 97.53 97.66 97.51 24.3221 0.3720

NB 72.02 72.18 73.31 71.89 2.6253 0.5649

SVM 99.47 99.46 99.47 99.46 0.2858 0.0372

K-NN 99.68 99.68 99.68 99.68 1.6159 1.4100

Proposed CNN DT 99.04 99.03 99.05 99.03 0.3292 0.0129

RF 99.57 99.57 99.58 99.57 3.3505 0.1597

NB 99.79 99.79 99.78 99.78 0.4129 0.1163

The boldvaluesindicate the best resulls.

The pre-trained SqueezeNet and AlexNet models were utilized to separate highlights from the ECG pictures in the
dataset. Moreover, our proposed CNN model filled in as an element extractor, and the results were looked at. Deep
learning's capacity takesintoconsideration the extraction of picture highlights without requiring the re-preparing ofthe
whole organization. The organizations not entirely settled through the forward spread of information pictures to the
assigned component layer. The initiationinclude layersusedare conv10(layer64), fc7 (layer20), and fc02 (layer32)
for SqueezeNet, AlexNet, and our proposed CNN model, separately. Table IX outlines the properties of the
recoveredhighlights. The recoveredhighlights were usedtoprepare the machine learningalgorithms: SVM, k-NN,
DT, RF, andNB.

The presentation measurements are figured and shown in Table X. The best result was accomplished with an accuracy,
recall, precision, and F1- score of 99.79% involving the NB strategy related to our recommended CNN model as the
component extractor. The SVM algorithm accomplished accuracy paces of 99.47%, 97.87%, and 97.66% while
using our recommended CNN model, SqueezeNet, and AlexNet, individually, for highlight extraction. The ideal
outcomes for all exhibition measurements were accomplished using our proposed CNN model as the element
extractor. Inthe examination of SqueezeNet and AlexNet, we almost accomplished unrivaled accuracy rates for the
SVM, RF, and NB algorithmsusing highlights removed from SqueezeNet contrasted with those got from AlexNet.
Inany case, the preparation and testing lengths for SqueezeNet-based strategies were stretched out attributable to
the expanded measure of the removed elements. Regardless of having the littlest separated highlight size, our
recommended CNN model achieved prevalent outcomes across all exhibition measurements, as shown in Table X.
This shows that our proposed model is intended to become familiar with the fundamental parts of the ECG pictures
dataset.

Subsequently, the recommended model offers unrivalled accuracy rates as
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well as decreased computational costs compared with existing writing. The proposed model could yield further
developed results assuming enhancementalgorithmsare utilized tofind out the upsides ofits hyperparameters.

VI. CONCLUSION

This examination presents a lightweight CNN-based model for ordering fourhead cardiovascular irregularities: AH,
M, H. ML, and NP, usinga public ECG picture dataset of heart patients. The exploratory outcomes demonstrate that
the proposed CNN modelachievesextraordinary executionincardiovasculardisease orderand can additionally act
asan element extraction device for customary machine learning classifiers.

The recommended CNN model fills in as a helper apparatus for doctors in the clinical space to recognize heart
disease from ECG pictures, subsequently evading the human technique that outcomes in mistakes and
postponements.

In future exploration, enhancement methods might be utilized to determine ideal qualities for the hyperparameters ofthe
proposed CNNmodel. The

proposed approach can likewise be used for anticipating a few different kinds ofissues. The recommended model
isordered as a low-scale deep learning technique in view of its number of layers, boundaries, and profundity. Thus, a
study on the applicability of the proposed model for segmentation in today’s online landscape can be explored
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