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ABSTRACT:  

Tuberculosis is a significant cause of illness and death worldwide. More importantly, the 
multidrug resistance cases are increasing. This requires a strong need to develop novel compounds 
possessing antimycobacterial properties and to enhance current therapies. In view of this, novel 1-
adamantyl derivatives were designed, synthesized and tested for its antituberculosis effectiveness against 
a susceptible strain of Mycobacterium tuberculosis (H37Rv). The samples were assessed using a classic 
growth based method, which involved the L.J. MIC method (Lowenstein and Jensen method). The results 
indicated that the synthesized 1-adamantyl hydrazide hydrazones (5-BVAC & 5-NVAC) showed 
significant antituberculosis activity when compared with known antituberculosis drug Isoniazid with 
minimum inhibitory concentration MIC of 0.9 ppm and 1.25 ppm. 

The mode of interaction was studied by carrying molecular docking study with MmpL3 from M. 
smegmatis which has the similar genus as Mycobacterium tuberculosis (H37Rv) with similarity in cell 
structure and genetic organisation. The binding affinity score of best binding conformation of 5-BVAC 
& 5-NVAC was −8.7 Kcal/mol 

The results show that 5-BVAC & 5-NVAC to be a new inhibitor of MmpL3 with the binding 
mode similar to that of other antituberculars that target MmpL3.  Hence the new scaffolds containing 
an adamantane and hydrazide hydrazone moiety may emerge as the potential anti TB agent, which can 
have the capability to enhance TB treatment in combination with other standard therapies. 

KEYWORDS: 1-adamantyl hydrazide hydrazone, L.J. MIC method, Mycobacterium tuberculosis 
H37Rv, M. smegmatis. 

 
INTRODUCTION:  

Tuberculosis (TB), caused by Mycobacterium tuberculosis, one of the leading infectious diseases 
in humans, which lead to 1.5 million deaths in the year 2020 [1]. The current treatment for drug-
sensitive TB is a combination of isoniazid, ethambuthol, rifampicin and pyrazinamide, but requires 
months under observation. Even after many efforts to end the epidemic, TB prevails and antibiotic-
resistant strains of Mycobacterium tuberculosis keeps rising. Hence, it is required to develop new 
molecules with antimycobacterial activities [2,3]. 

The WHO recommendations for the cure of drug-resistant and multi-drug resistant 
(MDR) TB include fluoroquinolones, linezolid and bedaquiline [4,5]. Bedaquiline was a 
new drug that was accepted in 2012 for the treatment of MDR TB. 



International Journal of Innovation Studies 9 (1) (2025) 

  

146 
 

Other anti-TB medications employed for second-line regimens, are para-aminosalicylic acid, 
fluoroquinolones, Clofazimine, and Cycloserine and betalactams. These medicines can be used in 
different combinations. The reappearance of MDR TB due to COVID-19 pandemic makes it more 
necessary to recognize new molecules [6]. 
Recently, a key area of research focus is the advancement of novel adamantane based drug 
molecules with enhanced pharmacokinetic and pharmacodynamic properties [7]. The adamantyl 
moiety is well established as a crucial pharmacophore in biologically active compounds. 
Incorporating the adamantyl core into molecules can significantly influence their lipophilicity, 
pharmacological, and biological properties [8]. Therefore, adamantane can effectively modify 
the therapeutic index of parent structures, making it widely utilized for diverse therapeutic 
applications. Adamantane derivatives have been shown to interact with various enzymes and 
exhibit a range of therapeutic activities such as anti-viral e.g. Tromatadine [9] and anti-
proliferative activities [10]. Adamantane derivatives, amantadine, has been found to have 
antiviral activity [11]. Adamantyl ureas such as AU1235 [12] and SQ109 [13] were previously 
identified as a group of compounds active against M.tuberculosis as potential inhibitors of 
MmpL3. SQ109 has completed phase 2 clinical trials. [14, 15].  
MmpL3 is a essential transmembrane protein that depends on the proton motive force 
(PMF) for the transport of mycolic acids in the form of trehalose monomycolates (TMMs) 
across the cell membrane. Many MmpL3 inhibitors with varied chemical scaffolds have been 
described such as a 1,2-diamine, SQ109 [13] , the pyrrole derivative BM212[16], the 
adamantyl urea AU1235 [12] etc. These molecules specifically bind to MmpL3 and thus 
block its activity [17]. The crystal structure of M. smegmatis MmpL3 has been determined 
and it has been observed that inhibitors with various chemical scaffolds bind to the same 
pocket in the proton translocation channel [18]. 

Hydrazide hydrazone groups have an azomethine linkage bonded to an amide group (-
CH=N-NH-CO-), which has a crucial role in pharmacological activities. They have been found 
to have biological activity, such as antimicrobial [19,20], antituberculosis [21,22], and 
anticancer [23] drugs. Thus, combining two groups, adamantane and hydrazones has the 
potential to form novel molecules with excellent biological activities.  

On the light of the above points, we have developed and created two adamantane hydrazide 
hydrazone derivatives namely N’-(5-Bromo-4-hydroxy-3-methoxybenzylidene) adamantane-1-
carbohydrazide (5-BVAC) and N’-(4-hydroxy-3-methoxy-5-nitro benzylidene) adamantane-1-
carbohydrazide (5-NVAC) that targets MmpL3. 
METHODOLOGY: 

Chemicals were sourced from SBL, Loba Chemie, and Ottokemi. The structural verification of 
adamantane derivative was performed using FTIR, NMR spectroscopy & elemental analysis. FTIR was 
performed using the KBr pellet technique on a Bruker 3000 Hyperion Microscope with a Vertex 80 FTIR 
system (Germany). ¹H NMR spectra were acquired in deuterated dimethyl sulfoxide (DMSO-d6) at 600 
MHz with a JEOL ECZR Series 600 mega Hertz NMR Spectrometer (Japan), using TMS as an internal 
standard, and chemical shifts are recorded in δ ppm. Elemental analysis was carried with ThermoFisher 
Scientific Flash smart V CHNS/O analyzer. Anti-tuberculosis activity was assessed using a classic growth 
based method, which incorporated the L.J. MIC method (Lowenstein and Jensen) against a susceptible 
strain of Mycobacterium tuberculosis (H37Rv) [24].  M. tuberculosis sensitive strain (H37Rv) was 
obtained from National Institute for Research in Tuberculosis in Chennai, Tamil Nadu. 

Molecular Docking was performed with pyrx tool using Vina wizard. The synthesised compounds 
5-BVAC and 5-NVAC were drawn using Kings draw software and converted into 3D using Discovery 
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studio Analyser. The protein molecule MmpL3 was energy minimised in Discovery studio and UCSF 
Chimera. 
(a)Synthesis of Methyl Adamantane-1-Carboxylate: 5 grams (27 mmol) of adamantane-1-carboxylic 
acid was reacted with 50 cm3 of methanol (1235 mmol) and 9.2 grams of 98 percent sulphuric acid (5.11 
cm3). This mixture was stirred and heated with reflux for 4 hours. After this, the mixture was neutralized 
to pH 7–8 using a 10% aqueous sodium bicarbonate (NaHCO3) solution. The solution was kept at room 
temperature. Following this, 200 cm3 of cold water was mixed, and then subjected to recrystallization with 
absolute ethanol yielding 4.92 grams of white, needle-shaped crystals of Methyl Adamantane-1-
Carboxylate [25,26], with an 88.2% yield. The melting point observed was 37 °C. It was identified by 
comparing its m.p. with the published value [27]. 

 
Adamantane-1-carboxylic acid Methyl Adamantane-1-Carboxylate 

Scheme1: Synthesis of Methyl Adamantane-1-Carboxylate 
(b)Synthesis of Adamantane-1-Carbohydrazide: 4 grams (20 mmol) of Methyl Adamantane-1-
Carboxylate and 25 cm3 (412 mmol) of 80 percent hydrazine hydrate solution in 18 cm3 of ethanol was 
refluxed for 15 hours. Upon completion, 200 cm3 of ice-cold water was added in the reaction. The formed 
precipitate was then filtered and given washings with ice water, and dried to yield 3.82 grams of an 
opalescent, scaly solid identified as Adamantane-1-Carbohydrazide, with an 88.99% yield. The melting 
point observed was 148 °C. FTIR υmax (cm-1): 3332.47, 3278.23 (N-H), 2912.48, 2894.13, 2849.49 (C-H), 
1613.79 (C=O), 1523.69 (N-H), 1452.70, 1368.80 (C-H) [19, 21]. 1H NMR (600 mHz, DMSO-d6, δ-ppm): 
1.93 (3H, adamantane), 1.74 (6H, adamantane), 1.63 (6H, adamantane), 4.12 (2H, -NH2), 8.68 (H, NH-C) 
[26]. 

 
Methyl Adamantane-1-Carboxylate            Adamantane-1-Carbohydrazide 

Scheme 2: Synthesis of Adamantane-1-Carbohydrazide 
(c)Synthesis of 5-Bromo Vanillin Adamantane Carbohydrazide (5BVAC): A combination of 2 
millimol of adamantane-1-carbohydrazide and 2 millimol of 5-Bromovanillin in 15 cm3 of ethanol was 
kept on stirring and refluxing for 4 hours. After completion of reaction, the solvent was evaporated further 
allowed to crystallize at 0–5°C. The resulting crystals were filtered and given washings with ethanol, and 
air-dried, yielding N’-(5-Bromo-4-hydroxy-3-methoxybenzylidene) adamantane-1-carbohydrazide (5-
BVAC) with an 83.98% yield. The melting point was determined to be 230 °C.  Elemental analysis CHN: 
Found (Calculated): C,56.170 (56.05);H,5.905(5.65),N,6.683 (6.88). The Molecular formula was 
confirmed to be C19H23O3N2Br, Molecular wt =407.09 g/mol. FTIR υmax cm-1: 3505.81 (O-H), 3255.98 (N-
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H), 3073.22 (C-H aromatic), 2904.34, 2848.77 (C-H aliphatic), 1650.14 (C=O), 1597.11 (C=N), 1547.02 
(N-H), 1498, 1451.57, 1416.19, 1386.69 (C-H). 1H NMR (600 MHz, DMSO-d6, δ ppm): 1.95 (3H, 
adamantane), 1.82 (6H, adamantane), 1.65 (6H, adamantane), 3.82 (3H, OCH3), 7.28, 7.21 (2H, Ar-H), 
8.19 (H, -N=CH), 9.91 (H, -NH-C), 10.72 (H, -OH). 

 
Adamantane-          5-Bromo Vanillin                             N’-(5-Bromo-4-hydroxy-3-methoxy  
1-Carbohydrazide                                                       benzylidene) adamantane-1-carbohydrazide   

Scheme 3: Synthesis of N’-(5-Bromo-4-hydroxy-3-methoxy benzylidene) adamantane-1-
carbohydrazide (5-BVAC)  

 
(d)Synthesis of 5-Nitro Vanillin Adamantane Carbohydrazide (5NVAC): A mixture of 2 millimol of 
adamantane-1-carbohydrazide (3) and 2 millimol of 5-nitrovanillin in 15 cm3 of ethanol was kept on 
stirring and refluxing for 4 hrs. Upon completion of the reaction, ethanol was evaporated. The resulting 
mixture was allowed to crystallize at 0–5°C. The resulting crystals were filtered and given washings with 
ethanol, and air-dried, yielding N’-(4-hydroxy-3-methoxy-5-nitro benzylidene) adamantane-1-
carbohydrazide (5-NVAC) with a 92.98% yield. The melting point was determined to be 190 °C. 
Elemental analysis CHN: Found (Calculated): C, 61.331(61.15); H, 5.947(6.16); N, 10.971(11.25). The 
Molecular formula was confirmed to be C19H23O5N3, Molecular wt =373.19 g/mol. FTIR υmax cm-1: 
3243.02 (N-H), 3084.15 (C-H aromatic), 2904.07, 2850.52 (C-H aliphatic), 1654.60 (C=O), 1617 (C=N), 
1531.91 (N-H), 1453.53, 1422.95, 1369.42 (C-H). 1H NMR (600 MHz, DMSO-d6, δ ppm): 2.00 (3H, 
adamantane), 1.86 (6H, adamantane), 1.69 (6H, adamantane), 3.92 (3H, OCH3), 7.67, 7.53 (2H, Ar-H), 
8.32 (H, -N=CH), 9.80 (H, -NH-C), 10.89 (H, -OH). 

 
Adamantane-          5-Nitro Vanillin                             N’-(4-hydroxy-3-methoxy-5- nitro 
1-Carbohydrazide                                                       benzylidene) adamantane-1-carbohydrazide                              

Scheme 4: Synthesis of N’-(4-hydroxy-3-methoxy-5-nitro benzylidene) adamantane-1-
carbohydrazide (5-NVAC) 

Antituberculosis Activity: 
In vitro testing of samples 5-BVAC & 5-NVAC against a susceptible strain of Mycobacterium 

tuberculosis (H37Rv) was performed. The samples were assessed using a classic growth based method, 
which incorporated the L.J. MIC method (Lowenstein and Jensen). During the experiment, 2% Malachite 
green solution, homogenized eggs solution, and mineral salt solutions were added to Lowenstein Jensen 
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(LJ) medium. Inoculated with a mycobacterium suspension strain whose concentration was equivalent to 
the McFarland standard, the medium containing various concentrations of samples (100, 50, 25, 12.5, 6.25, 
3.125, 10, 5, 2.5, 1.25, 8, 4, 2, 1, 0.5, 0.25 μg/mL) was then maintained at 37°C with regular monitoring. 
The M. tuberculosis H37Rv was studied with Isoniazid, a well-known drug giving Minimum Inhibitory 
Concentration MIC of 0.2 µg /cm3. The MIC for synthesized compounds 5-BVAC & 5-NVAC was observed 
to be 0.9 µg/cm3 and 1.2 µg/cm3. 
Molecular Docking of MmpL3 with 5-BVAC & 5-NVAC: 

Molecular docking [28] was carried out using MmpL3 from M.smegmatis (PDBID:6AJH) 
obtained from the Protein data bank. It has the similar genus as Mycobacterium tuberculosis (H37Rv) 
with similarity in cell structure and genetic organisation. M.smegmatis is often used as a model organism 
for M. Tuberculosis.  

 

Fig 1: Molecular docking of MmpL3 with 5-BVAC 
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Fig 2: Molecular docking of MmpL3 with 5-NVAC 

The binding affinity score of the best binding conformation of both 5-BVAC & 5-NVAC was 
observed to be −8.7 kcal/mol. The binding site with MmpL3 is expected to be similar to that of 
other antituberculars SQ109 and AU1235 that target MmpL3 in the same pocket inside the proton-
translocating channel, in the transmembrane region. 

RESULTS:  

Structure of 5-BVAC & 5-NVAC were recognised using elemental analysis, FTIR and 1H NMR. 
The establishment of hydrazone structure was proved with IR studies; following the detection of 
hydrazide C=O and azomethine –CH=N- peak in IR spectra.  
1H NMR also proved the establishment of hydrazide structure in 5-BVAC & 5-NVAC. 1H NMR 
signals from the adamantane moiety appeared at δ 1.65-2.00 ppm. Aromatic protons appeared as 
expected at δ 7.21-7.67 ppm. The signal from the methyne proton (CH=N) appeared as a singlet 
at δ 8.19 & 8.32  ppm respectively, whereas that of the amide proton recorded a singlet at δ 9.91 
& 9.80 ppm respectively. The –OH proton was recorded at δ 10.72 ppm, whereas the –OCH3 
protons was seen at δ 3.82 & 3.92 ppm respectively. All spectra were in full agreement with the 
proposed structure. 

Molecular docking indicates that 5-BVAC & 5-NVAC binds to the same centre as that of other 
antituberculars that target MmpL3.   
CONCLUSION: 

The increase in drug-resistant TB presents a significant health challenge. Reducing the disease 
will necessitate new molecules capable of enhancing treatment. Here, we identified compound 5 BVAC 
& 5-NVAC as probable inhibitor of MmpL3 with a new scaffold containing an adamantane group 
and a hydrazide hydrazone group. Compound 5-BVAC & 5-NVAC demonstrated anti-mycobacterial 
activity against M. tuberculosis H37Rv. The anti-TB activity was evaluated using L.J. MIC method 
(Lowenstein and Jensen) method. The MIC for 5 BVAC & 5-NVAC was observed to be 0.9 µg/ml & 1.2 
µg/ml. 
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Number of studies have suggested that certain inhibitors indirectly target MmpL3 and distrupt the 
membrane potential [29,30]. Future works with other compounds showing similarity with synthesised 
compound may provide useful information. Based on our results, we consider 5-BVAC & 5-NVAC to 
have promising therapeutic potential in future. 
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